Search results
Results From The WOW.Com Content Network
The knapsack problem is one of the most studied problems in combinatorial optimization, with many real-life applications. For this reason, many special cases and generalizations have been examined. For this reason, many special cases and generalizations have been examined.
The most common problem being solved is the 0-1 knapsack problem, which restricts the number of copies of each kind of item to zero or one. Given a set of n {\displaystyle n} items numbered from 1 up to n {\displaystyle n} , each with a weight w i {\displaystyle w_{i}} and a value v i {\displaystyle v_{i}} , along with a maximum weight capacity ...
In theoretical computer science, the continuous knapsack problem (also known as the fractional knapsack problem) is an algorithmic problem in combinatorial optimization in which the goal is to fill a container (the "knapsack") with fractional amounts of different materials chosen to maximize the value of the selected materials.
Each packing problem has a dual covering problem, which asks how many of the same objects are required to completely cover every region of the container, where objects are allowed to overlap. In a bin packing problem, people are given: A container, usually a two- or three-dimensional convex region, possibly of infinite size. Multiple containers ...
In the fractional set cover problem, it is allowed to select fractions of sets, rather than entire sets. A fractional set cover is an assignment of a fraction (a number in [0,1]) to each set in S {\displaystyle {\mathcal {S}}} , such that for each element x in the universe, the sum of fractions of sets that contain x is at least 1.
Knapsack problem, quadratic knapsack problem, and several variants [2] [3]: MP9 Some problems related to Multiprocessor scheduling; Numerical 3-dimensional matching [3]: SP16 Open-shop scheduling; Partition problem [2] [3]: SP12 Quadratic assignment problem [3]: ND43 Quadratic programming (NP-hard in some cases, P if convex)
The problem of fractional knapsack with penalties was introduced by Malaguti, Monaci, Paronuzzi and Pferschy. [44] They developed an FPTAS and a dynamic program for the problem, and they showed an extensive computational study comparing the performance of their models.
Indeed, this problem does not have an FPTAS unless P=NP. The same is true for the two-dimensional knapsack problem. The same is true for the multiple subset sum problem: the quasi-dominance relation should be: s quasi-dominates t iff max(s 1, s 2) ≤ max(t 1, t 2), but it is not preserved by transitions, by the same example as above. 2.