Search results
Results From The WOW.Com Content Network
To reduce the problem somewhat, a Latin square can always be put into a standard form known as a reduced square. A reduced square has its top row elements written in some natural order for the symbol set (for example, integers in increasing order or letters in alphabetical order). The left column entries are put in the same order.
A Latin square is said to be reduced (also, normalized or in standard form) if both its first row and its first column are in their natural order. [4] For example, the Latin square above is not reduced because its first column is A, C, B rather than A, B, C. Any Latin square can be reduced by permuting (that is, reordering) the rows and columns ...
Let (i, j) be the square in column i and row j on the n × n chessboard, k an integer. One approach [3] is If the remainder from dividing n by 6 is not 2 or 3 then the list is simply all even numbers followed by all odd numbers not greater than n. Otherwise, write separate lists of even and odd numbers (2, 4, 6, 8 – 1, 3, 5, 7).
A matrix with the same number of rows and columns is called a square matrix. [5] A matrix with an infinite number of rows or columns (or both) is called an infinite matrix. In some contexts, such as computer algebra programs, it is useful to consider a matrix with no rows or no columns, called an empty matrix.
For instance, the main diagonal of the 4×4 matrix above contains the elements a 11 = 9, a 22 = 11, a 33 = 4, a 44 = 10. In mathematics, a square matrix is a matrix with the same number of rows and columns. An n-by-n matrix is known as a square matrix of order . Any two square matrices of the same order can be added and multiplied.
A Graeco-Latin square or Euler square or pair of orthogonal Latin squares of order n over two sets S and T (which may be the same), each consisting of n symbols, is an n × n arrangement of cells, each cell containing an ordered pair (s, t), where s is in S and t is in T, such that every row and every column contains each element of S and each element of T exactly once, and that no two cells ...
A Sudoku is a type of Latin square with the additional property that each element occurs exactly once in sub-sections of size √ n × √ n (called boxes). Combinatorial explosion occurs as n increases, creating limits to the properties of Sudokus that can be constructed, analyzed, and solved, as illustrated in the following table.
For example the following sequence can be used to form an order 3 magic square according to the Siamese method (9 boxes): 5, 10, 15, 20, 25, 30, 35, 40, 45 (the magic sum gives 75, for all rows, columns and diagonals). The magic sum in these cases will be the sum of the arithmetic progression used divided by the order of the magic square.