Search results
Results From The WOW.Com Content Network
To reduce the problem somewhat, a Latin square can always be put into a standard form known as a reduced square. A reduced square has its top row elements written in some natural order for the symbol set (for example, integers in increasing order or letters in alphabetical order). The left column entries are put in the same order.
A filling of the n × n square with the numbers 1 to n 2 in a square, such that the rows, columns, and diagonals all sum to different values has been called a heterosquare. [4] (Thus, they are the relaxation in which no particular values are required for the row, column, and diagonal sums.)
A Graeco-Latin square or Euler square or pair of orthogonal Latin squares of order n over two sets S and T (which may be the same), each consisting of n symbols, is an n × n arrangement of cells, each cell containing an ordered pair (s, t), where s is in S and t is in T, such that every row and every column contains each element of S and each element of T exactly once, and that no two cells ...
A Latin square is said to be reduced (also, normalized or in standard form) if both its first row and its first column are in their natural order. [4] For example, the Latin square above is not reduced because its first column is A, C, B rather than A, B, C. Any Latin square can be reduced by permuting (that is, reordering) the rows and columns ...
A Survo puzzle is called open, if merely marginal sums are given. Two open m × n puzzles are considered essentially different if one of them cannot converted to another by interchanging rows and columns or by transposing when m = n. In these puzzles the row and column sums are distinct.
The smallest (and unique up to rotation and reflection) non-trivial case of a magic square, order 3. In mathematics, especially historical and recreational mathematics, a square array of numbers, usually positive integers, is called a magic square if the sums of the numbers in each row, each column, and both main diagonals are the same.
√ (square-root symbol) Denotes square root and is read as the square root of. Rarely used in modern mathematics without a horizontal bar delimiting the width of its argument (see the next item). For example, √2. √ (radical symbol) 1. Denotes square root and is read as the square root of.
For example the following sequence can be used to form an order 3 magic square according to the Siamese method (9 boxes): 5, 10, 15, 20, 25, 30, 35, 40, 45 (the magic sum gives 75, for all rows, columns and diagonals). The magic sum in these cases will be the sum of the arithmetic progression used divided by the order of the magic square.