Ad
related to: wave mechanical model schrodinger definition physics worksheet answers book
Search results
Results From The WOW.Com Content Network
The Schrödinger equation gives the evolution over time of the wave function, the quantum-mechanical characterization of an isolated physical system. The equation was postulated by Schrödinger based on a postulate of Louis de Broglie that all matter has an associated matter wave .
The wave function of an initially very localized free particle. In quantum physics, a wave function (or wavefunction) is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters ψ and Ψ (lower-case and capital psi, respectively). Wave functions are complex ...
This book, fortuitously, contained a great many of the mathematical tools necessary for the continued development of quantum mechanics. In 1926, John von Neumann became assistant to David Hilbert, and he would coin the term Hilbert space to describe the algebra and analysis which were used in the development of quantum mechanics.
The definition of quantum theorists' terms, such as wave function and matrix mechanics, progressed through many stages.For instance, Erwin Schrödinger originally viewed the electron's wave function as its charge density smeared across space, but Max Born reinterpreted the absolute square value of the wave function as the electron's probability density distributed across space; [3]: 24–33 ...
Working from the definition, a partial solution for a wavefunction of a particle with a constant energy can be constructed. If the wavefunction is assumed to be separable, then the time dependence can be stated as e − i E t / ℏ {\displaystyle e^{-iEt/\hbar }} , where E is the constant energy.
The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light waves). It arises in fields like acoustics, electromagnetism, and fluid dynamics.
In a paper in 1968, Vladimir E. Zakharov describes the Hamiltonian structure of water waves. In the same paper Zakharov shows that, for slowly modulated wave groups, the wave amplitude satisfies the nonlinear Schrödinger equation, approximately. [13] The value of the nonlinearity parameter к depends on the relative water depth.
In quantum mechanics, the Schrödinger equation describes how a system changes with time. It does this by relating changes in the state of the system to the energy in the system (given by an operator called the Hamiltonian). Therefore, once the Hamiltonian is known, the time dynamics are in principle known.