Search results
Results From The WOW.Com Content Network
Le Chatelier–Braun principle analyzes the qualitative behaviour of a thermodynamic system when a particular one of its externally controlled state variables, say , changes by an amount , the 'driving change', causing a change , the 'response of prime interest', in its conjugate state variable , all other externally controlled state variables remaining constant.
According to Le Chatelier's principle, the addition of acetate ions from sodium acetate will suppress the ionization of acetic acid and shift its equilibrium to the left. Thus the percent dissociation of the acetic acid will decrease, and the pH of the solution will increase.
This is an example of Le Châtelier's principle in action: Increasing the concentration of the hydroxide ion causes more aluminium hydroxide to precipitate, which removes hydroxide from the solution. When the hydroxide concentration becomes sufficiently high the soluble aluminate, Al(OH) − 4, is formed.
Henry Louis Le Chatelier [1] (French pronunciation: [ɑ̃ʁi lwi lə ʃɑtəlje]; 8 October 1850 – 17 September 1936) was a French chemist of the late 19th and early 20th centuries. He devised Le Chatelier's principle, used by chemists and chemical engineers to predict the effect a changing condition has on a system in chemical equilibrium.
When some strong acid is added to an equilibrium mixture of the weak acid and its conjugate base, hydrogen ions (H +) are added, and the equilibrium is shifted to the left, in accordance with Le Chatelier's principle. Because of this, the hydrogen ion concentration increases by less than the amount expected for the quantity of strong acid added.
By Le Chatelier's principle, anything that stabilizes the proton produced will cause the reaction to shift to the right, thus the enhanced affinity of deoxyhemoglobin for protons enhances synthesis of bicarbonate and accordingly increases capacity of deoxygenated blood for carbon dioxide. The majority of carbon dioxide in the blood is in the ...
The temperature of the solution eventually decreases to match that of the surroundings. The equilibrium, between the gas as a separate phase and the gas in solution, will by Le Châtelier's principle shift to favour the gas going into solution as the temperature is decreased (decreasing the temperature increases the solubility of a gas).
The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.