When.com Web Search

  1. Ads

    related to: aerodynamics lift coefficient calculator for concrete slab foundation cracks

Search results

  1. Results From The WOW.Com Content Network
  2. Lift coefficient - Wikipedia

    en.wikipedia.org/wiki/Lift_coefficient

    It is also useful to show the relationship between section lift coefficient and drag coefficient. The section lift coefficient is based on two-dimensional flow over a wing of infinite span and non-varying cross-section so the lift is independent of spanwise effects and is defined in terms of ′, the lift force per unit span of the wing. The ...

  3. Vortex lattice method - Wikipedia

    en.wikipedia.org/wiki/Vortex_lattice_method

    The Vortex lattice method, (VLM), is a numerical method used in computational fluid dynamics, mainly in the early stages of aircraft design and in aerodynamic education at university level. The VLM models the lifting surfaces, such as a wing, of an aircraft as an infinitely thin sheet of discrete vortices to compute lift and induced drag.

  4. Lift (force) - Wikipedia

    en.wikipedia.org/wiki/Lift_(force)

    Lift is proportional to the density of the air and approximately proportional to the square of the flow speed. Lift also depends on the size of the wing, being generally proportional to the wing's area projected in the lift direction. In calculations it is convenient to quantify lift in terms of a lift coefficient based on these factors.

  5. Kutta–Joukowski theorem - Wikipedia

    en.wikipedia.org/wiki/Kutta–Joukowski_theorem

    The Kutta–Joukowski theorem is a fundamental theorem in aerodynamics used for the calculation of lift of an airfoil (and any two-dimensional body including circular cylinders) translating in a uniform fluid at a constant speed so large that the flow seen in the body-fixed frame is steady and unseparated.

  6. United States Air Force Stability and Control Digital DATCOM

    en.wikipedia.org/wiki/United_States_Air_Force...

    In February 1976, work commenced to automate the methods contained in the USAF Stability and Control DATCOM, specifically those contained in sections 4, 5, 6 and 7.The work was performed by the McDonnell Douglas Corporation under contract with the United States Air Force in conjunction with engineers at the Air Force Flight Dynamics Laboratory in Wright-Patterson Air Force Base.

  7. Lift-to-drag ratio - Wikipedia

    en.wikipedia.org/wiki/Lift-to-drag_ratio

    In aerodynamics, the lift-to-drag ratio (or L/D ratio) is the lift generated by an aerodynamic body such as an aerofoil or aircraft, divided by the aerodynamic drag caused by moving through air. It describes the aerodynamic efficiency under given flight conditions. The L/D ratio for any given body will vary according to these flight conditions.

  8. Wing loading - Wikipedia

    en.wikipedia.org/wiki/Wing_loading

    As stalling is due to wing loading and maximum lift coefficient at a given altitude and speed, this limits the turning radius due to maximum load factor. At Mach 0.85 and 0.7 lift coefficient, a wing loading of 50 lb/sq ft (240 kg/m 2 ) can reach a structural limit of 7.33 g up to 15,000 feet (4,600 m) and then decreases to 2.3 g at 40,000 feet ...

  9. Drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Drag_coefficient

    Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.