Search results
Results From The WOW.Com Content Network
The dynamic_cast operator in C++ is used for downcasting a reference or pointer to a more specific type in the class hierarchy. Unlike the static_cast, the target of the dynamic_cast must be a pointer or reference to class. Unlike static_cast and C-style typecast
Although static_cast conversions are checked at compile time to prevent obvious incompatibilities, no run-time type checking is performed that would prevent a cast between incompatible data types, such as pointers. A static_cast from a pointer to a class B to a pointer to a derived class D is ill-formed if B is an inaccessible or ambiguous base ...
In C++, run-time type checking is implemented through dynamic_cast. Compile-time downcasting is implemented by static_cast, but this operation performs no type check. If it is used improperly, it could produce undefined behavior.
In the C family of languages and ALGOL 68, the word cast typically refers to an explicit type conversion (as opposed to an implicit conversion), causing some ambiguity about whether this is a re-interpretation of a bit-pattern or a real data representation conversion. More important is the multitude of ways and rules that apply to what data ...
Some features of C++ that promote more type-safe code: The new operator returns a pointer of type based on operand, whereas malloc returns a void pointer. C++ code can use virtual functions and templates to achieve polymorphism without void pointers. Safer casting operators, such as dynamic cast that performs run-time type checking.
The C++ standards do not mandate exactly how dynamic dispatch must be implemented, but compilers generally use minor variations on the same basic model. Typically, the compiler creates a separate virtual method table for each class.
dynamic with optional static typing newLisp: implicit dynamic NEWP: strong static Newspeak: dynamic NewtonScript: dynamic Nial: dynamic Nim: strong partially implicit (type inference) static Nickle: strong Nu: dynamic Oberon: strong explicit nominal static and partially dynamic [TS 6] Objective-C: strong explicit nominal dynamic with optional ...
The process of verifying and enforcing the constraints of types—type checking—may occur at compile time (a static check) or at run-time (a dynamic check). If a language specification requires its typing rules strongly, more or less allowing only those automatic type conversions that do not lose information, one can refer to the process as strongly typed; if not, as weakly typed.