When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Liouville's theorem (Hamiltonian) - Wikipedia

    en.wikipedia.org/wiki/Liouville's_theorem...

    In physics, Liouville's theorem, named after the French mathematician Joseph Liouville, is a key theorem in classical statistical and Hamiltonian mechanics.It asserts that the phase-space distribution function is constant along the trajectories of the system—that is that the density of system points in the vicinity of a given system point traveling through phase-space is constant with time.

  3. Hamiltonian vector field - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_vector_field

    The integral curves of a Hamiltonian vector field represent solutions to the equations of motion in the Hamiltonian form. The diffeomorphisms of a symplectic manifold arising from the flow of a Hamiltonian vector field are known as canonical transformations in physics and (Hamiltonian) symplectomorphisms in mathematics. [1]

  4. Liouville's equation - Wikipedia

    en.wikipedia.org/wiki/Liouville's_equation

    For Liouville's equation in Euclidean space, see Liouville–Bratu–Gelfand equation. In differential geometry, Liouville's equation, named after Joseph Liouville, [1] [2] is the nonlinear partial differential equation satisfied by the conformal factor f of a metric f 2 (dx 2 + dy 2) on a surface of constant Gaussian curvature K:

  5. Liouville field theory - Wikipedia

    en.wikipedia.org/wiki/Liouville_field_theory

    In physics, Liouville field theory (or simply Liouville theory) is a two-dimensional conformal field theory whose classical equation of motion is a generalization of Liouville's equation. Liouville theory is defined for all complex values of the central charge c {\displaystyle c} of its Virasoro symmetry algebra , but it is unitary only if

  6. Liouville's theorem (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Liouville's_theorem...

    In complex analysis, Liouville's theorem, named after Joseph Liouville (although the theorem was first proven by Cauchy in 1844 [1]), states that every bounded entire function must be constant. That is, every holomorphic function f {\displaystyle f} for which there exists a positive number M {\displaystyle M} such that | f ( z ) | ≤ M ...

  7. Liouville's theorem - Wikipedia

    en.wikipedia.org/wiki/Liouville's_theorem

    Liouville's theorem has various meanings, all mathematical results named after Joseph Liouville: In complex analysis, see Liouville's theorem (complex analysis) There is also a related theorem on harmonic functions

  8. Liouville's formula - Wikipedia

    en.wikipedia.org/wiki/Liouville's_formula

    Liouville's formula is a generalization of Abel's identity and can be used to prove it. Since Liouville's formula relates the different linearly independent solutions of the system of differential equations, it can help to find one solution from the other(s), see the example application below.

  9. Robin boundary condition - Wikipedia

    en.wikipedia.org/wiki/Robin_boundary_condition

    Robin boundary conditions are commonly used in solving Sturm–Liouville problems which appear in many contexts in science and engineering.. In addition, the Robin boundary condition is a general form of the insulating boundary condition for convection–diffusion equations.