When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Orbital speed - Wikipedia

    en.wikipedia.org/wiki/Orbital_speed

    In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.

  3. Orbital velocity - Wikipedia

    en.wikipedia.org/wiki/Orbital_velocity

    Orbital velocity may refer to the following: The orbital angular velocity; The orbital speed of a revolving body in a gravitational field. The velocity of particles due to wave motion, such as those in wind waves; The equivalent velocity of a bound electron needed to produce its orbital kinetic energy

  4. Orbital state vectors - Wikipedia

    en.wikipedia.org/wiki/Orbital_state_vectors

    Orbital position vector, orbital velocity vector, other orbital elements. In astrodynamics and celestial dynamics, the orbital state vectors (sometimes state vectors) of an orbit are Cartesian vectors of position and velocity that together with their time () uniquely determine the trajectory of the orbiting body in space.

  5. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    Orbital mechanics is a core discipline within space-mission design and control. Celestial mechanics treats more broadly the orbital dynamics of systems under the influence of gravity, including both spacecraft and natural astronomical bodies such as star systems, planets, moons, and comets.

  6. Low Earth orbit - Wikipedia

    en.wikipedia.org/wiki/Low_Earth_orbit

    The mean orbital velocity needed to maintain a stable low Earth orbit is about 7.8 km/s (4.8 mi/s), which translates to 28,000 km/h (17,000 mph). However, this depends on the exact altitude of the orbit.

  7. Elliptic orbit - Wikipedia

    en.wikipedia.org/wiki/Elliptic_orbit

    The state of an orbiting body at any given time is defined by the orbiting body's position and velocity with respect to the central body, which can be represented by the three-dimensional Cartesian coordinates (position of the orbiting body represented by x, y, and z) and the similar Cartesian components of the orbiting body's velocity.

  8. Circular orbit - Wikipedia

    en.wikipedia.org/wiki/Circular_orbit

    The speed (or the magnitude of velocity) relative to the centre of mass is constant: [1]: 30 = = where: , is the gravitational constant, is the mass of both orbiting bodies (+), although in common practice, if the greater mass is significantly larger, the lesser mass is often neglected, with minimal change in the result.

  9. Orbit of the Moon - Wikipedia

    en.wikipedia.org/wiki/Orbit_of_the_Moon

    With a mean orbital velocity around the barycentre between the Earth and the Moon, of 1.022 km/s (0.635 miles/s, 2,286 miles/h), [6] the Moon covers a distance approximately its diameter, or about half a degree on the celestial sphere, each hour.