Search results
Results From The WOW.Com Content Network
This is a feature of C# 3.0. C# 3.0 introduced type inference, allowing the type specifier of a variable declaration to be replaced by the keyword var, if its actual type can be statically determined from the initializer.
List comprehension – C# 3 LINQ; Tuples – .NET Framework 4.0 but it becomes popular when C# 7.0 introduced a new tuple type with language support [104] Nested functions – C# 7.0 [104] Pattern matching – C# 7.0 [104] Immutability – C# 7.2 readonly struct C# 9 record types [105] and Init only setters [106]
The programming language C# version 3.0 was released on 19 November 2007 as part of .NET Framework 3.5. It includes new features inspired by functional programming languages such as Haskell and ML, and is driven largely by the introduction of the Language Integrated Query (LINQ) pattern to the Common Language Runtime. [1]
This is an accepted version of this page This is the latest accepted revision, reviewed on 6 February 2025. Language for communicating instructions to a machine The source code for a computer program in C. The gray lines are comments that explain the program to humans. When compiled and run, it will give the output "Hello, world!". A programming language is a system of notation for writing ...
As an example, consider a need of extending the string class with a new reverse method whose return value is a string with the characters in reversed order. Because the string class is a sealed type, the method would typically be added to a new utility class in a manner similar to the following:
As a precursor to the lambda functions introduced in C# 3.0, C#2.0 added anonymous delegates. These provide closure-like functionality to C#. [3] Code inside the body of an anonymous delegate has full read/write access to local variables, method parameters, and class members in scope of the delegate, excepting out and ref parameters. For example:-
→ 1 + 1 + a (by rule 3 on the leftmost S), If a string in the language of the grammar has more than one parsing tree, then the grammar is said to be an ambiguous grammar . Such grammars are usually hard to parse because the parser cannot always decide which grammar rule it has to apply.
The "generic programming" paradigm is an approach to software decomposition whereby fundamental requirements on types are abstracted from across concrete examples of algorithms and data structures and formalized as concepts, analogously to the abstraction of algebraic theories in abstract algebra. [6]