Search results
Results From The WOW.Com Content Network
Generalizations of the Farkas' lemma are about the solvability theorem for convex inequalities, [4] i.e., infinite system of linear inequalities. Farkas' lemma belongs to a class of statements called "theorems of the alternative": a theorem stating that exactly one of two systems has a solution. [5]
In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction [1] used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. [2]
Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011. In 2020, the company was acquired by American educational technology website Course Hero. [3] [4]
The solution set of a given set of equations or inequalities is the set of all its solutions, a solution being a tuple of values, one for each unknown, that satisfies all the equations or inequalities. If the solution set is empty, then there are no values of the unknowns that satisfy simultaneously all equations and inequalities.
Example: consider the following differential equation (Kummer's equation with a = 1 and b = 2): ″ + ′ = The roots of the indicial equation are −1 and 0. Two independent solutions are 1 / z {\displaystyle 1/z} and e z / z , {\displaystyle e^{z}/z,} so we see that the logarithm does not appear in any solution.
Therefore, the solution = is extraneous and not valid, and the original equation has no solution. For this specific example, it could be recognized that (for the value =), the operation of multiplying by () (+) would be a multiplication by zero. However, it is not always simple to evaluate whether each operation already performed was allowed by ...
Bennett's inequality, an upper bound on the probability that the sum of independent random variables deviates from its expected value by more than any specified amount Bhatia–Davis inequality , an upper bound on the variance of any bounded probability distribution
A simple procedure to determine which half-plane is in the solution set is to calculate the value of ax + by at a point (x 0, y 0) which is not on the line and observe whether or not the inequality is satisfied. For example, [3] to draw the solution set of x + 3y < 9, one first draws the line with equation x + 3y = 9 as a dotted line, to ...