Search results
Results From The WOW.Com Content Network
In mathematics, the Fibonacci sequence is a ... [20] The name "Fibonacci sequence" was first used by ... evaluated in terms of theta functions. For example, ...
A repfigit, or Keith number, is an integer such that, when its digits start a Fibonacci sequence with that number of digits, the original number is eventually reached. An example is 47, because the Fibonacci sequence starting with 4 and 7 (4, 7, 11, 18, 29, 47) reaches 47. A repfigit can be a tribonacci sequence if there are 3 digits in the ...
For generalized Fibonacci sequences (satisfying the same recurrence relation, but with other initial values, e.g. the Lucas numbers) the number of occurrences of 0 per cycle is 0, 1, 2, or 4. The ratio of the Pisano period of n and the number of zeros modulo n in the cycle gives the rank of apparition or Fibonacci entry point of n.
In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only k {\displaystyle k} previous terms of the sequence appear in the equation, for a parameter k {\displaystyle k} that is independent of n {\displaystyle n} ; this number k ...
Beginning of the Fibonacci sequence on a building in Gothenburg. In mathematics, an integer sequence is a sequence (i.e., an ordered list) of integers.. An integer sequence may be specified explicitly by giving a formula for its nth term, or implicitly by giving a relationship between its terms.
As with the Fibonacci numbers, each Lucas number is defined to be the sum of its two immediately previous terms, thereby forming a Fibonacci integer sequence. The first two Lucas numbers are = and =, which differs from the first two Fibonacci numbers = and =. Though closely related in definition, Lucas and Fibonacci numbers exhibit distinct ...
Another example in this chapter involves the growth of a population of rabbits, where the solution requires generating a numerical sequence. [8] Although the resulting Fibonacci sequence dates back long before Leonardo, [ 9 ] its inclusion in his book is why the sequence is named after him today.
For example, the sequence of powers of two (1, 2, 4, 8, ...), the basis of the binary numeral system, is a complete sequence; given any natural number, we can choose the values corresponding to the 1 bits in its binary representation and sum them to obtain that number (e.g. 37 = 100101 2 = 1 + 4 + 32). This sequence is minimal, since no value ...