Search results
Results From The WOW.Com Content Network
In calculus, and especially multivariable calculus, the mean of a function is loosely defined as the average value of the function over its domain. In one variable, the mean of a function f ( x ) over the interval ( a , b ) is defined by: [ 1 ]
wff – well-formed formula. whp – with high probability. wlog – without loss of generality. WMA – we may assume. WO – well-ordered set. [1] WOP – well-ordered principle. w.p. – with probability. wp1 – with probability 1. wrt – with respect to or with regard to. WTP – want to prove. WTS – want to show.
The arithmetic mean (or simply mean or average) of a list of numbers, is the sum of all of the numbers divided by their count.Similarly, the mean of a sample ,, …,, usually denoted by ¯, is the sum of the sampled values divided by the number of items in the sample.
The arithmetic mean of a set of observed data is equal to the sum of the numerical values of each observation, divided by the total number of observations. Symbolically, for a data set consisting of the values , …,, the arithmetic mean is defined by the formula:
BBC Bitesize, [1] also abbreviated to Bitesize, is the BBC's free online study support resource for school-age pupils in the United Kingdom. It is designed to aid pupils in both schoolwork and, for older pupils, exams .
Furthermore, the mean value of the series can be calculated via: /: ¯ = +. The formula is essentially the same as the formula for the mean of a discrete uniform distribution, interpreting the arithmetic progression as a set of equally probable outcomes.
In mathematics and its applications, the mean square is normally defined as the arithmetic mean of the squares of a set of numbers or of a random variable. [ 1 ] It may also be defined as the arithmetic mean of the squares of the deviations between a set of numbers and a reference value (e.g., may be a mean or an assumed mean of the data), [ 2 ...
In ANOVA, there is a similar usage of grand mean to calculate sum of squares (SSQ), a measurement of variation. The total variation is defined as the sum of squared differences between each score and the grand mean (designated as GM), given by the equation