Search results
Results From The WOW.Com Content Network
In business, data mining is the analysis of historical business activities, stored as static data in data warehouse databases. The goal is to reveal hidden patterns and trends. Data mining software uses advanced pattern recognition algorithms to sift through large amounts of data to assist in discovering previously unknown strategic business ...
Affinity analysis falls under the umbrella term of data mining which uncovers meaningful correlations between different entities according to their co-occurrence in a data set. In almost all systems and processes, the application of affinity analysis can extract significant knowledge about the unexpected trends [ citation needed ] .
Relational data mining is the data mining technique for relational databases. [1] Unlike traditional data mining algorithms, which look for patterns in a single table (propositional patterns), relational data mining algorithms look for patterns among multiple tables (relational patterns). For most types of propositional patterns, there are ...
An operational data store (ODS) is used for operational reporting and as a source of data for the enterprise data warehouse (EDW). It is a complementary element to an EDW in a decision support environment, and is used for operational reporting, controls, and decision making, as opposed to the EDW, which is used for tactical and strategic decision support.
Sequential pattern mining is a topic of data mining concerned with finding statistically relevant patterns between data examples where the values are delivered in a sequence. [ 1 ] [ 2 ] It is usually presumed that the values are discrete, and thus time series mining is closely related, but usually considered a different activity.
Oracle Data Mining (ODM) is an option of Oracle Database Enterprise Edition. It contains several data mining and data analysis algorithms for classification, prediction, regression, associations, feature selection, anomaly detection, feature extraction, and specialized analytics.
To data and structure mine XML data of any form, at least two extensions are required to conventional data mining. These are the ability to associate an XPath statement with any data pattern and sub statements with each data node in the data pattern, and the ability to mine the presence and count of any node or set of nodes within the document.
K-optimal pattern discovery is a data mining technique that provides an alternative to the frequent pattern discovery approach that underlies most association rule learning techniques. Frequent pattern discovery techniques find all patterns for which there are sufficiently frequent examples in the sample data .