Search results
Results From The WOW.Com Content Network
Fermat's principle is most familiar, however, in the case of visible light: it is the link between geometrical optics, which describes certain optical phenomena in terms of rays, and the wave theory of light, which explains the same phenomena on the hypothesis that light consists of waves.
In the generalized Fermat’s principle [6] the time is used as a functional and together as a variable. It is applied Pontryagin’s minimum principle of the optimal control theory and obtained an effective Hamiltonian for the light-like particle motion in a curved spacetime. It is shown that obtained curves are null geodesics.
The general results presented above for Hamilton's principle can be applied to optics using the Lagrangian defined in Fermat's principle.The Euler-Lagrange equations with parameter σ =x 3 and N=2 applied to Fermat's principle result in ˙ = with k = 1, 2 and where L is the optical Lagrangian and ˙ = /.
The laws of reflection and refraction can be derived from Fermat's principle which states that the path taken between two points by a ray of light is the path that can be traversed in the least time. [ 36 ]
Fermat's Last Theorem (number theory) Fermat's little theorem (number theory) Fermat's theorem on sums of two squares (number theory) Fermat's theorem (stationary points) (real analysis) Fermat polygonal number theorem (number theory) Fernique's theorem (measure theory) Ferrero–Washington theorem (algebraic number theory) Feuerbach's theorem
In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation a n + b n = c n for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions. [1]
The most spectacular application of the conjecture is the proof of Fermat's Last Theorem (FLT). Suppose that for a prime p ≥ 5, the Fermat equation + = has a solution with non-zero integers, hence a counter-example to FLT. Then as Yves Hellegouarch was the first to notice, [19] the elliptic curve
Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: N = a 2 − b 2 . {\displaystyle N=a^{2}-b^{2}.} That difference is algebraically factorable as ( a + b ) ( a − b ) {\displaystyle (a+b)(a-b)} ; if neither factor equals one, it is a proper ...