Search results
Results From The WOW.Com Content Network
As the temperature and pressure approach the critical point, the properties of the liquid and gas become progressively more similar. At the critical point, the liquid and gas become indistinguishable. Above the critical point, there are no longer separate liquid and gas phases: there is only a generic fluid phase referred to as a supercritical ...
Thus, the substance requires a higher temperature for its molecules to have enough energy to break out of the fixed pattern of the solid phase and enter the liquid phase. A similar concept applies to liquid–gas phase changes. [7] Water is an exception which has a solid-liquid boundary with negative slope so that the melting point decreases ...
A small piece of rapidly melting solid argon shows two concurrent phase changes. The transition from solid to liquid, and gas to liquid (shown by the white condensed water vapour). Other phase changes include: Transition to a mesophase between solid and liquid, such as one of the "liquid crystal" phases.
A vapor can exist in equilibrium with a liquid (or solid), in which case the gas pressure equals the vapor pressure of the liquid (or solid). A supercritical fluid (SCF) is a gas whose temperature and pressure are above the critical temperature and critical pressure respectively. In this state, the distinction between liquid and gas disappears.
Liquid crystal: Properties intermediate between liquids and crystals. Generally, able to flow like a liquid but exhibiting long-range orientational order. Supercritical fluid: A fluid with properties intermediate of liquids and gasses. At sufficiently high temperatures and pressures, the distinction between liquid and gas disappears, resulting ...
Although liquid–gas transitions have a higher heat of transformation than solid–liquid transitions, liquid→gas phase changes are impractical for thermal storage because large volumes or high pressures are required to store the materials in their gas phase. Solid–solid phase changes are typically very slow and have a relatively low heat ...
Three-phase, gas-liquid-liquid flows: mixtures of vapors and two immiscible liquid phases are common in chemical engineering plants. Examples are gas-oil-water flows in oil recovery systems and immiscible condensate-vapor flows in steam/hydrocarbon condensing systems. [20] Further examples lie in the flow of oil, water and natural gas.
Different modes of two-phase flows. In fluid mechanics, two-phase flow is a flow of gas and liquid — a particular example of multiphase flow.Two-phase flow can occur in various forms, such as flows transitioning from pure liquid to vapor as a result of external heating, separated flows, and dispersed two-phase flows where one phase is present in the form of particles, droplets, or bubbles in ...