When.com Web Search

  1. Ad

    related to: sequence to prediction equation generator with steps

Search results

  1. Results From The WOW.Com Content Network
  2. Autoregressive model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_model

    Here two sets of prediction equations are combined into a single estimation scheme and a single set of normal equations. One set is the set of forward-prediction equations and the other is a corresponding set of backward prediction equations, relating to the backward representation of the AR model:

  3. Linear congruential generator - Wikipedia

    en.wikipedia.org/wiki/Linear_congruential_generator

    The second row is the same generator with a seed of 3, which produces a cycle of length 2. Using a = 4 and c = 1 (bottom row) gives a cycle length of 9 with any seed in [0, 8]. A linear congruential generator (LCG) is an algorithm that yields a sequence of pseudo-randomized numbers calculated with a discontinuous piecewise linear equation.

  4. Richardson extrapolation - Wikipedia

    en.wikipedia.org/wiki/Richardson_extrapolation

    In numerical analysis, Richardson extrapolation is a sequence acceleration method used to improve the rate of convergence of a sequence of estimates of some value = (). In essence, given the value of A ( h ) {\displaystyle A(h)} for several values of h {\displaystyle h} , we can estimate A ∗ {\displaystyle A^{\ast }} by extrapolating the ...

  5. Formulas for generating Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Formulas_for_generating...

    The original triple comprises the constant term in each of the respective quadratic equations. Below is a sample output from these equations. The effect of these equations is to cause the m-value in the Euclid equations to increment in steps of 4, while the n-value increments by 1.

  6. Stepwise regression - Wikipedia

    en.wikipedia.org/wiki/Stepwise_regression

    The main approaches for stepwise regression are: Forward selection, which involves starting with no variables in the model, testing the addition of each variable using a chosen model fit criterion, adding the variable (if any) whose inclusion gives the most statistically significant improvement of the fit, and repeating this process until none improves the model to a statistically significant ...

  7. Predictor–corrector method - Wikipedia

    en.wikipedia.org/wiki/Predictor–corrector_method

    All such algorithms proceed in two steps: The initial, "prediction" step, starts from a function fitted to the function-values and derivative-values at a preceding set of points to extrapolate ("anticipate") this function's value at a subsequent, new point.

  8. Baum–Welch algorithm - Wikipedia

    en.wikipedia.org/wiki/Baum–Welch_algorithm

    The Baum–Welch algorithm was named after its inventors Leonard E. Baum and Lloyd R. Welch.The algorithm and the Hidden Markov models were first described in a series of articles by Baum and his peers at the IDA Center for Communications Research, Princeton in the late 1960s and early 1970s. [2]

  9. Monte Carlo method - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_method

    the (pseudo-random) number generator has certain characteristics (e.g. a long "period" before the sequence repeats) the (pseudo-random) number generator produces values that pass tests for randomness; there are enough samples to ensure accurate results; the proper sampling technique is used; the algorithm used is valid for what is being modeled