Search results
Results From The WOW.Com Content Network
Since liquid water flows, ocean waters cycle and flow in currents around the world. Since water easily changes phase, it can be carried into the atmosphere as water vapour or frozen as an iceberg. It can then precipitate or melt to become liquid water again. All marine life is immersed in water, the matrix and womb of life itself. [7]
Sea water removes waste from animals and plants. Sea water is cleaner than we can imagine. Because of the huge volume of ocean, the waste produced by oceanic organisms and even human activities can hardly get the sea water polluted. The waste is not only 'waste' but also an important food source.
The ocean plays a key role in the water cycle as it is the source of 86% of global evaporation. [2] The water cycle involves the exchange of energy, which leads to temperature changes. When water evaporates, it takes up energy from its surroundings and cools the environment. When it condenses, it releases energy and warms the environment.
At the Indian Ocean, a vertical exchange of a lower layer of cold and salty water from the Atlantic and the warmer and fresher upper ocean water from the tropical Pacific occurs, in what is known as overturning. In the Pacific Ocean, the rest of the cold and salty water from the Atlantic undergoes haline forcing, and becomes warmer and fresher ...
Osmotic power, salinity gradient power or blue energy is the energy available from the difference in the salt concentration between seawater and river water. Two practical methods for this are reverse electrodialysis (RED) and pressure retarded osmosis (PRO).
Marine energy, also known as ocean energy, ocean power, or marine and hydrokinetic energy, refers to energy harnessed from waves, tides, salinity gradients, and temperature differences in the ocean. The movement of water in the world's oceans stores vast amounts of kinetic energy , which can be converted into electricity to power homes ...
For premium support please call: 800-290-4726 more ways to reach us
"Our results show how future climate change can potentially weaken marine food webs through reduced energy flow to higher trophic levels and a shift towards a more detritus-based system, leading to food web simplification and altered producer–consumer dynamics, both of which have important implications for the structuring of benthic communities."