Search results
Results From The WOW.Com Content Network
A number that has the same number of digits as the number of digits in its prime factorization, including exponents but excluding exponents equal to 1. A046758: Extravagant numbers: 4, 6, 8, 9, 12, 18, 20, 22, 24, 26, 28, 30, 33, 34, 36, 38, ... A number that has fewer digits than the number of digits in its prime factorization (including ...
Introduced in Python 2.2 as an optional feature and finalized in version 2.3, generators are Python's mechanism for lazy evaluation of a function that would otherwise return a space-prohibitive or computationally intensive list. This is an example to lazily generate the prime numbers:
Pages in category "Articles with example Python (programming language) code" The following 200 pages are in this category, out of approximately 201 total. This list may not reflect recent changes .
In Raku, a sister language to Perl, for must be used to traverse elements of a list (foreach is not allowed). The expression which denotes the collection to loop over is evaluated in list-context, but not flattened by default, and each item of the resulting list is, in turn, aliased to the loop variable(s). List literal example:
Lookup, find, or get find the value (if any) that is bound to a given key. The argument to this operation is the key, and the value is returned from the operation. If no value is found, some lookup functions raise an exception, while others return a default value (such as zero, null, or a specific value passed to the constructor).
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.
evaluates to the list 2, 4, …, 10 by applying the predicate even to every element of the list of integers 1, 2, …, 10 in that order and creating a new list of those elements for which the predicate returns the Boolean value true, thereby giving a list containing only the even members of that list. Conversely, the code example
When the array contains only duplicates of a relatively small number of items, a constant-time perfect hash function can greatly speed up finding where to put an item 1, turning the sort from Θ(n 2) time to Θ(n + k) time, where k is the total number of hashes. The array ends up sorted in the order of the hashes, so choosing a hash function ...