When.com Web Search

  1. Ad

    related to: 7 dimensional cross product

Search results

  1. Results From The WOW.Com Content Network
  2. Seven-dimensional cross product - Wikipedia

    en.wikipedia.org/.../Seven-dimensional_cross_product

    In three dimensions the cross product is invariant under the action of the rotation group, SO(3), so the cross product of x and y after they are rotated is the image of x × y under the rotation. But this invariance is not true in seven dimensions; that is, the cross product is not invariant under the group of rotations in seven dimensions, SO(7).

  3. Seven-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Seven-dimensional_space

    When n = 7, the set of all such locations is called 7-dimensional space. Often such a space is studied as a vector space, without any notion of distance. Seven-dimensional Euclidean space is seven-dimensional space equipped with a Euclidean metric, which is defined by the dot product. [disputed – discuss]

  4. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    A cross product for 7-dimensional vectors can be obtained in the same way by using the octonions instead of the quaternions. The nonexistence of nontrivial vector-valued cross products of two vectors in other dimensions is related to the result from Hurwitz's theorem that the only normed division algebras are the ones with dimension 1, 2, 4, and 8.

  5. Distance from a point to a line - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    where is the cross product of the vectors and and where ‖ ‖ is the vector norm of . A P → = P − A {\displaystyle {\overrightarrow {\mathrm {AP} }}=P-A} Note that cross products only exist in dimensions 3 and 7 and trivially in dimensions 0 and 1 (where the cross product is constant 0).

  6. Lagrange's identity - Wikipedia

    en.wikipedia.org/wiki/Lagrange's_identity

    However, the cross product in 7 dimensions does not share all the properties of the cross product in 3 dimensions. For example, the direction of a × b in 7-dimensions may be the same as c × d even though c and d are linearly independent of a and b. Also the seven-dimensional cross product is not compatible with the Jacobi identity. [9]

  7. Pseudovector - Wikipedia

    en.wikipedia.org/wiki/Pseudovector

    To paraphrase Baylis: Given two polar vectors (that is, true vectors) a and b in three dimensions, the cross product composed from a and b is the vector normal to their plane given by c = a × b. Given a set of right-handed orthonormal basis vectors { e ℓ}, the cross product is expressed in terms of its components as:

  8. Triple product - Wikipedia

    en.wikipedia.org/wiki/Triple_product

    This also relates to the handedness of the cross product; the cross product transforms as a pseudovector under parity transformations and so is properly described as a pseudovector. The dot product of two vectors is a scalar but the dot product of a pseudovector and a vector is a pseudoscalar, so the scalar triple product (of vectors) must be ...

  9. Talk:Seven-dimensional cross product/Archive 2 - Wikipedia

    en.wikipedia.org/wiki/Talk:Seven-dimensional...

    That source is about the cross product in 3D: it deduces the Schwarz inequality in general, then shows that in 3D the result gives the expression above. Nowhere does it work out a 7D result, so it is irrelevant to this article which is on the seven-dimensional cross product.--JohnBlackburne words deeds 12:51, 18 April 2010 (UTC)