Search results
Results From The WOW.Com Content Network
Two disjoint sets. In set theory in mathematics and formal logic, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set. [1] For example, {1, 2, 3} and {4, 5, 6} are disjoint sets, while {1, 2, 3} and {3, 4, 5} are not disjoint. A collection of two ...
One set is said to intersect another set if . Sets that do not intersect are said to be disjoint . The power set of X {\displaystyle X} is the set of all subsets of X {\displaystyle X} and will be denoted by ℘ ( X ) = def { L : L ⊆ X } . {\displaystyle \wp (X)~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~\{~L~:~L\subseteq X~\}.}
In a logical setting, one can use model-theoretic semantics to interpret Euler diagrams, within a universe of discourse. In the examples below, the Euler diagram depicts that the sets Animal and Mineral are disjoint since the corresponding curves are disjoint, and also that the set Four Legs is a subset of the set of Animals.
However, the unit interval [0, 1] and the set of rational numbers Q are not almost disjoint, because their intersection is infinite. This definition extends to any collection of sets. A collection of sets is pairwise almost disjoint or mutually almost disjoint if any two distinct sets in the collection are almost disjoint. Often the prefix ...
function Find(x) is if x.parent ≠ x then x.parent := Find(x.parent) return x.parent else return x end if end function This implementation makes two passes, one up the tree and one back down. It requires enough scratch memory to store the path from the query node to the root (in the above pseudocode, the path is implicitly represented using ...
We say that two sets A and B are lattice disjoint or disjoint if a and b are disjoint for all a in A and all b in B, in which case we write . [2] If A is the singleton set { a } {\displaystyle \{a\}} then we will write a ⊥ B {\displaystyle a\perp B} in place of { a } ⊥ B {\displaystyle \{a\}\perp B} .
Suppose, to the contrary, that there is a function, f, on the natural numbers with f(n+1) an element of f(n) for each n.Define S = {f(n): n a natural number}, the range of f, which can be seen to be a set from the axiom schema of replacement.
The set system consists of pairwise disjoint sets , …, with sizes ,,, …, respectively, as well as two additional disjoint sets ,, each of which contains half of the elements from each . On this input, the greedy algorithm takes the sets S k , … , S 1 {\displaystyle S_{k},\ldots ,S_{1}} , in that order, while the optimal solution consists ...