When.com Web Search

  1. Ads

    related to: modulo arithmetic problems

Search results

  1. Results From The WOW.Com Content Network
  2. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae , published in 1801.

  3. Modulo (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Modulo_(mathematics)

    Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.

  4. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    The division algorithm shows that the set of integers, {0, 1, 2, ..., m − 1} form a complete system of residues modulo m, known as the least residue system modulo m. In working with arithmetic problems it is sometimes more convenient to work with a complete system of residues and use the language of congruences while at other times the point ...

  5. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In mathematics, the result of the modulo operation is an equivalence class, and any member of the class may be chosen as representative; however, the usual representative is the least positive residue, the smallest non-negative integer that belongs to that class (i.e., the remainder of the Euclidean division). [2]

  6. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n.

  7. Satisfiability modulo theories - Wikipedia

    en.wikipedia.org/wiki/Satisfiability_modulo_theories

    In computer science and mathematical logic, satisfiability modulo theories (SMT) is the problem of determining whether a mathematical formula is satisfiable.It generalizes the Boolean satisfiability problem (SAT) to more complex formulas involving real numbers, integers, and/or various data structures such as lists, arrays, bit vectors, and strings.

  8. A College Student Just Solved a Notoriously Impossible Math ...

    www.aol.com/college-student-just-solved...

    A college student just solved a seemingly paradoxical math problem—and the answer came from an incredibly unlikely place. Skip to main content. 24/7 Help. For premium support please call: 800 ...

  9. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Perl's Math::BigInt module has a bmodpow() method to perform modular exponentiation; Raku has a built-in routine expmod. Go's big.Int type contains an Exp() (exponentiation) method whose third parameter, if non-nil, is the modulus; PHP's BC Math library has a bcpowmod() function to perform modular exponentiation