Ads
related to: fractal calculus and its applications 6th book
Search results
Results From The WOW.Com Content Network
Fractals and Fractional Calculus in Continuum Mechanics. Springer-Verlag Telos. ISBN 978-3-211-82913-4. Igor Podlubny (27 October 1998). Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier. ISBN 978-0-08-053198-4.
Differential Equations on Fractals. Princeton. ISBN 978-0-691-12542-8. Pavel Exner; Jonathan P. Keating; Peter Kuchment; Toshikazu Sunada & Alexander Teplyaev (2008). Analysis on graphs and its applications: Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, January 8-June 29, 2007. AMS Bookstore. ISBN 978-0-8218-4471-7.
In applied mathematics and mathematical analysis, the fractal derivative or Hausdorff derivative is a non-Newtonian generalization of the derivative dealing with the measurement of fractals, defined in fractal geometry. Fractal derivatives were created for the study of anomalous diffusion, by which traditional approaches fail to factor in the ...
The Koch snowflake (also known as the Koch curve, Koch star, or Koch island [1] [2]) is a fractal curve and one of the earliest fractals to have been described. It is based on the Koch curve, which appeared in a 1904 paper titled "On a Continuous Curve Without Tangents, Constructible from Elementary Geometry" [3] by the Swedish mathematician Helge von Koch.
The books in this series, like the other Springer-Verlag mathematics series, are small yellow books of a standard size. The books in this series tend to be written at a more elementary level than the similar Graduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and ...
Starting in the 1950s Benoit Mandelbrot and others have studied self-similarity of fractal curves, and have applied theory of fractals to modelling natural phenomena. Self-similarity occurs, and analysis of these patterns has found fractal curves in such diverse fields as economics, fluid mechanics, geomorphology, human physiology and linguistics.