Search results
Results From The WOW.Com Content Network
The pineapple is an example of a CAM plant.. Crassulacean acid metabolism, also known as CAM photosynthesis, is a carbon fixation pathway that evolved in some plants as an adaptation to arid conditions [1] that allows a plant to photosynthesize during the day, but only exchange gases at night.
Phytochemicals are chemicals of plant origin. [1] Phytochemicals (from Greek phyto, meaning "plant") are chemicals produced by plants through primary or secondary metabolism. [2] [3] They generally have biological activity in the plant host and play a role in plant growth or defense against competitors, pathogens, or predators. [2]
In actuality, however, plants do not absorb all incoming sunlight (due to reflection, respiration requirements of photosynthesis and the need for optimal solar radiation levels) and do not convert all harvested energy into biomass, which results in a maximum overall photosynthetic efficiency of 3 to 6% of total solar radiation. [1]
As mentioned above in the History tab, secondary plant metabolites help the plant maintain an intricate balance with the environment, often adapting to match the environmental needs. Plant metabolites that color the plant are a good example of this, as the coloring of a plant can attract pollinators and also defend against attack by animals.
In plant-based metabolomics, it is common to refer to "primary" and "secondary" metabolites. [3] A primary metabolite is directly involved in the normal growth, development, and reproduction. A secondary metabolite is not directly involved in those processes, but usually has important ecological function.
C 4 plants have a competitive advantage over plants possessing the more common C 3 carbon fixation pathway under conditions of drought, high temperatures, and nitrogen or CO 2 limitation. When grown in the same environment, at 30 °C, C 3 grasses lose approximately 833 molecules of water per CO 2 molecule that is fixed, whereas C 4 grasses lose ...
This ability to avoid photorespiration makes these plants more hardy than other plants in dry and hot environments, wherein stomata are closed and internal carbon dioxide levels are low. Under these conditions, photorespiration does occur in C 4 plants, but at a much lower level compared with C 3 plants in the same conditions.
Plant ecophysiology is concerned largely with two topics: mechanisms (how plants sense and respond to environmental change) and scaling or integration (how the responses to highly variable conditions—for example, gradients from full sunlight to 95% shade within tree canopies—are coordinated with one another), and how their collective effect on plant growth and gas exchange can be ...