Ad
related to: exothermic reaction
Search results
Results From The WOW.Com Content Network
The thermite reaction is famously exothermic. The reduction of iron(III) oxide by aluminium releases sufficient heat to yield molten iron. In thermochemistry, an exothermic reaction is a "reaction for which the overall standard enthalpy change ΔH⚬ is negative." [1] [2] Exothermic reactions usually release heat.
According to the IUPAC, an exothermic reaction is "a reaction for which the overall standard enthalpy change ΔH⚬ is negative". [4] Some examples of exothermic process are fuel combustion, condensation and nuclear fission, [5] which is used in nuclear power plants to release large amounts of energy. [6]
The exothermic (heat producing) reaction between potassium permanganate (KMnO 4), a strong oxidizing agent, and glycerol (C 3 H 5 (OH) 3), a readily oxidised organic substance, is an example of an experiment sometimes referred to as a "chemical volcano".
Aluminothermic reactions are exothermic chemical reactions using aluminium as the reducing agent at high temperature. The process is industrially useful for production of alloys of iron. [1] The most prominent example is the thermite reaction between iron oxides and aluminium to produce iron itself: Fe 2 O 3 + 2 Al → 2 Fe + Al 2 O 3
This reaction to form carbon dioxide and molybdenum is endothermic at low temperatures, becoming less so with increasing temperature. [18] ΔH° is zero at 1855 K, and the reaction becomes exothermic above that temperature. Changes in temperature can also reverse the direction tendency of a reaction. For example, the water gas shift reaction
Van 't Hoff plot for an exothermic reaction. For an exothermic reaction, heat is released, making the net enthalpy change negative. Thus, according to the definition of the slope: =, For an exothermic reaction Δ r H < 0, so
Exothermic welding, also known as exothermic bonding, thermite welding (TW), [1] and thermit welding, [1] is a welding process that employs molten metal to permanently join the conductors. The process employs an exothermic reaction of a thermite composition to heat the metal, and requires no external source of heat or current.
The Boudouard reaction to form carbon dioxide and carbon is exothermic at all temperatures. However, the standard enthalpy of the Boudouard reaction becomes less negative with increasing temperature, [2] as shown to the side. While the formation enthalpy of CO 2 is higher than that of CO, the formation entropy is much lower.