Search results
Results From The WOW.Com Content Network
Gradient descent is a method for unconstrained mathematical optimization. ... It is particularly useful in machine learning for minimizing the cost or loss function. [1]
Stochastic gradient descent is a popular algorithm for training a wide range of models in machine learning, including (linear) support vector machines, logistic regression (see, e.g., Vowpal Wabbit) and graphical models. [22]
Mini-batch techniques are used with repeated passing over the training data to obtain optimized out-of-core versions of machine learning algorithms, for example, stochastic gradient descent. When combined with backpropagation, this is currently the de facto training method for training artificial neural networks.
The reparameterization trick (aka "reparameterization gradient estimator") is a technique used in statistical machine learning, particularly in variational inference, variational autoencoders, and stochastic optimization.
In the adaptive control literature, the learning rate is commonly referred to as gain. [2] In setting a learning rate, there is a trade-off between the rate of convergence and overshooting. While the descent direction is usually determined from the gradient of the loss function, the learning rate determines how big a step is taken in that ...
In machine learning, ... As noted above, gradient descent tells us that our change for each weight should be proportional to the gradient.
SGLD can be applied to the optimization of non-convex objective functions, shown here to be a sum of Gaussians. Stochastic gradient Langevin dynamics (SGLD) is an optimization and sampling technique composed of characteristics from Stochastic gradient descent, a Robbins–Monro optimization algorithm, and Langevin dynamics, a mathematical extension of molecular dynamics models.
In machine learning, early stopping is a form of regularization used to avoid overfitting when training a model with an iterative method, such as gradient descent. Such methods update the model to make it better fit the training data with each iteration. Up to a point, this improves the model's performance on data outside of the training set (e ...