Search results
Results From The WOW.Com Content Network
The properties of gradient descent depend on the properties of the objective function and the variant of gradient descent used (for example, if a line search step is used). The assumptions made affect the convergence rate, and other properties, that can be proven for gradient descent. [ 33 ]
Stochastic gradient descent competes with the L-BFGS algorithm, [citation needed] which is also widely used. Stochastic gradient descent has been used since at least 1960 for training linear regression models, originally under the name ADALINE. [25] Another stochastic gradient descent algorithm is the least mean squares (LMS) adaptive filter.
The reparameterization trick (aka "reparameterization gradient estimator") is a technique used in statistical machine learning, particularly in variational inference, variational autoencoders, and stochastic optimization.
In optimization, a gradient method is an algorithm to solve problems of the form with the search directions defined by the gradient of the function at the current point. Examples of gradient methods are the gradient descent and the conjugate gradient.
Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2). In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-semidefinite.
For example, the developing of information-geometric optimization methods (mirror descent [6] and natural gradient descent [7]). The standard references in the field are Shun’ichi Amari and Hiroshi Nagaoka's book, Methods of Information Geometry, [8] and the more recent book by Nihat Ay and others. [9]
The minimization of the Kullback–Leibler divergence with respect to the points is performed using gradient descent. The result of this optimization is a map that reflects the similarities between the high-dimensional inputs.
By contrast, gradient descent methods can move in any direction that the ridge or alley may ascend or descend. Hence, gradient descent or the conjugate gradient method is generally preferred over hill climbing when the target function is differentiable. Hill climbers, however, have the advantage of not requiring the target function to be ...