When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rule-based machine learning - Wikipedia

    en.wikipedia.org/wiki/Rule-based_machine_learning

    Rule-based machine learning (RBML) is a term in computer science intended to encompass any machine learning method that identifies, learns, or evolves 'rules' to store, manipulate or apply. [ 1 ] [ 2 ] [ 3 ] The defining characteristic of a rule-based machine learner is the identification and utilization of a set of relational rules that ...

  3. Association rule learning - Wikipedia

    en.wikipedia.org/wiki/Association_rule_learning

    Association rule learning is a rule-based machine learning method for discovering interesting relations between variables in large databases. It is intended to identify strong rules discovered in databases using some measures of interestingness. [ 1 ]

  4. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Rule-based machine learning is a general term for any machine learning method that identifies, learns, or evolves "rules" to store, manipulate or apply knowledge. The defining characteristic of a rule-based machine learning algorithm is the identification and utilization of a set of relational rules that collectively represent the knowledge ...

  5. Rule-based modeling - Wikipedia

    en.wikipedia.org/wiki/Rule-based_modeling

    Rule-based modeling is a modeling approach that uses a set of rules that indirectly specifies a mathematical model. The rule-set can either be translated into a model such as Markov chains or differential equations, or be treated using tools that directly work on the rule-set in place of a translated model, as the latter is typically much bigger.

  6. Learning classifier system - Wikipedia

    en.wikipedia.org/wiki/Learning_classifier_system

    Learning classifier systems, or LCS, are a paradigm of rule-based machine learning methods that combine a discovery component (e.g. typically a genetic algorithm in evolutionary computation) with a learning component (performing either supervised learning, reinforcement learning, or unsupervised learning). [2]

  7. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    Decision trees are among a fairly small family of machine learning models that are easily interpretable along with linear models, rule-based models, and attention-based models. This interpretability is one of the main advantages of decision trees.

  8. Rule induction - Wikipedia

    en.wikipedia.org/wiki/Rule_induction

    Rule induction is an area of machine learning in which formal rules are extracted from a set of observations. The rules extracted may represent a full scientific model of the data, or merely represent local patterns in the data.

  9. Associative classifier - Wikipedia

    en.wikipedia.org/wiki/Associative_classifier

    An associative classifier (AC) is a kind of supervised learning model that uses association rules to assign a target value. The term associative classification was coined by Bing Liu et al., [1] in which the authors defined a model made of rules "whose right-hand side are restricted to the classification class attribute".