Ad
related to: rule based machine learning python
Search results
Results From The WOW.Com Content Network
Rule-based machine learning (RBML) is a term in computer science intended to encompass any machine learning method that identifies, learns, or evolves 'rules' to store, manipulate or apply. [ 1 ] [ 2 ] [ 3 ] The defining characteristic of a rule-based machine learner is the identification and utilization of a set of relational rules that ...
Association rule learning is a rule-based machine learning method for discovering interesting relations between variables in large databases. It is intended to identify strong rules discovered in databases using some measures of interestingness. [ 1 ]
Data mining in general and rule induction in detail are trying to create algorithms without human programming but with analyzing existing data structures. [1]: 415- In the easiest case, a rule is expressed with “if-then statements” and was created with the ID3 algorithm for decision tree learning.
While a rules-based system could be considered as having “fixed” intelligence, in contrast, a machine learning system is adaptive and attempts to simulate human intelligence.
The CN2 induction algorithm is a learning algorithm for rule induction. [1] It is designed to work even when the training data is imperfect. It is based on ideas from the AQ algorithm and the ID3 algorithm. As a consequence it creates a rule set like that created by AQ but is able to handle noisy data like ID3.
An associative classifier (AC) is a kind of supervised learning model that uses association rules to assign a target value. The term associative classification was coined by Bing Liu et al., [1] in which the authors defined a model made of rules "whose right-hand side are restricted to the classification class attribute".
Rule-based modeling is a modeling approach that uses a set of rules that indirectly specifies a mathematical model. The rule-set can either be translated into a model such as Markov chains or differential equations, or be treated using tools that directly work on the rule-set in place of a translated model, as the latter is typically much bigger.
Rule-based machine learning is a general term for any machine learning method that identifies, learns, or evolves "rules" to store, manipulate or apply knowledge. The defining characteristic of a rule-based machine learning algorithm is the identification and utilization of a set of relational rules that collectively represent the knowledge ...