Search results
Results From The WOW.Com Content Network
The gradient of F is then normal to the hypersurface. Similarly, an affine algebraic hypersurface may be defined by an equation F(x 1, ..., x n) = 0, where F is a polynomial. The gradient of F is zero at a singular point of the hypersurface (this is the definition of a singular point). At a non-singular point, it is a nonzero normal vector.
A selection gradient describes the relationship between a character trait and a species' relative fitness. [1] A trait may be a physical characteristic, such as height or eye color, or behavioral, such as flying or vocalizing. Changes in a trait, such as the amount of seeds a plant produces or the length of a bird's beak, may improve or reduce ...
Some suggest that multivariate regression is distinct from multivariable regression, however, that is debated and not consistently true across scientific fields. [2] Principal components analysis (PCA) creates a new set of orthogonal variables that contain the same information as the original set. It rotates the axes of variation to give a new ...
This form suggests that if we can find a function whose gradient is given by , then the integral is given by the difference of at the endpoints of the interval of integration. Thus the problem of studying the curves that make the integral stationary can be related to the study of the level surfaces of ψ . {\displaystyle \psi .}
The gradient theorem states that if the vector field F is the gradient of some scalar-valued function (i.e., if F is conservative), then F is a path-independent vector field (i.e., the integral of F over some piecewise-differentiable curve is dependent only on end points). This theorem has a powerful converse:
In multivariable calculus, the directional derivative measures the rate at which a function changes in a particular direction at a given point. [citation needed]The directional derivative of a multivariable differentiable (scalar) function along a given vector v at a given point x intuitively represents the instantaneous rate of change of the function, moving through x with a direction ...
The curl of the gradient of any continuously twice-differentiable scalar field (i.e., differentiability class) is always the zero vector: =. It can be easily proved by expressing ∇ × ( ∇ φ ) {\displaystyle \nabla \times (\nabla \varphi )} in a Cartesian coordinate system with Schwarz's theorem (also called Clairaut's theorem on equality ...
Gradient descent with momentum remembers the solution update at each iteration, and determines the next update as a linear combination of the gradient and the previous update. For unconstrained quadratic minimization, a theoretical convergence rate bound of the heavy ball method is asymptotically the same as that for the optimal conjugate ...