Search results
Results From The WOW.Com Content Network
A Fenwick tree or binary indexed tree (BIT) is a data structure that stores an array of values and can efficiently compute prefix sums of the values and update the values. It also supports an efficient rank-search operation for finding the longest prefix whose sum is no more than a specified value.
However, trailing zeros may be useful for indicating the number of significant figures, for example in a measurement. In such a context, "simplifying" a number by removing trailing zeros would be incorrect. The number of trailing zeros in a non-zero base-b integer n equals the exponent of the highest power of b that divides n.
Counting total, leading and trailing zeros; Searching for bit strings; Permutations of bits and bytes in a word; Software algorithms for multiplication; Integer division; Efficient integer division and calculating of the remainder when the divisor is known; Integer square and cube roots; Unusual number systems, including base −2
A nearly equivalent operation is count trailing zeros (ctz) or number of trailing zeros (ntz), which counts the number of zero bits following the least significant one bit. The complementary operation that finds the index or position of the most significant set bit is log base 2 , so called because it computes the binary logarithm ⌊log 2 (x ...
If it is the rough estimation, then only the first three non-zero digits are significant since the trailing zeros are neither reliable nor necessary; 45600 m can be expressed as 45.6 km or as 4.56 × 10 4 m in scientific notation, and neither expression requires the trailing zeros. An exact number has an infinite number of significant figures.
var c = 0.0 // The array input has elements indexed for i = 1 to input.length do // c is zero the first time around. var y = input[i] + c // sum + c is an approximation to the exact sum. (sum,c) = Fast2Sum(sum,y) // Next time around, the lost low part will be added to y in a fresh attempt. next i return sum
Legendre's formula describes the exponents of the prime numbers in a prime factorization of the factorials, and can be used to count the trailing zeros of the factorials. Daniel Bernoulli and Leonhard Euler interpolated the factorial function to a continuous function of complex numbers, except at the negative integers, the (offset) gamma function.
For example, a digital door lock with a 4-digit code (each digit having 10 possibilities, from 0 to 9) would have B (10, 4) solutions, with length 10 000. Therefore, only at most 10 000 + 3 = 10 003 (as the solutions are cyclic) presses are needed to open the lock, whereas trying all codes separately would require 4 × 10 000 = 40 000 presses.