When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Totally bounded space - Wikipedia

    en.wikipedia.org/wiki/Totally_bounded_space

    [0, 1] 2 is a totally bounded space because for every ε > 0, the unit square can be covered by finitely many open discs of radius ε. A metric space (,) is totally bounded if and only if for every real number >, there exists a finite collection of open balls of radius whose centers lie in M and whose union contains M.

  3. Compact space - Wikipedia

    en.wikipedia.org/wiki/Compact_space

    X is closed and bounded (as a subset of any metric space whose restricted metric is d). The converse may fail for a non-Euclidean space; e.g. the real line equipped with the discrete metric is closed and bounded but not compact, as the collection of all singletons of the space is an open cover which admits no finite subcover. It is complete but ...

  4. Bounded set - Wikipedia

    en.wikipedia.org/wiki/Bounded_set

    The metric space (M, d) is a bounded metric space (or d is a bounded metric) if M is bounded as a subset of itself. Total boundedness implies boundedness. For subsets of R n the two are equivalent. A metric space is compact if and only if it is complete and totally bounded. A subset of Euclidean space R n is compact if and only if it is closed and

  5. Metric space - Wikipedia

    en.wikipedia.org/wiki/Metric_space

    The space M is called precompact or totally bounded if for every r > 0 there is a finite cover of M by open balls of radius r. Every totally bounded space is bounded. To see this, start with a finite cover by r-balls for some arbitrary r. Since the subset of M consisting of the centers of these balls is finite, it has finite diameter, say D.

  6. ω-bounded space - Wikipedia

    en.wikipedia.org/wiki/Ω-bounded_space

    In mathematics, an ω-bounded space is a topological space in which the closure of every countable subset is compact. More generally, if P is some property of subspaces, then a P-bounded space is one in which every subspace with property P has compact closure. Every compact space is ω-bounded, and every ω-bounded space is countably compact.

  7. Ball (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ball_(mathematics)

    A ball in n dimensions is called a hyperball or n-ball and is bounded by a hypersphere or (n−1)-sphere. Thus, for example, a ball in the Euclidean plane is the same thing as a disk, the area bounded by a circle. In Euclidean 3-space, a ball is taken to be the volume bounded by a 2-dimensional sphere. In a one-dimensional space, a ball is a ...

  8. ba space - Wikipedia

    en.wikipedia.org/wiki/Ba_space

    In other words, the inclusion in the bidual () = is isomorphic to the inclusion of the space of countably additive μ-a.c. bounded measures inside the space of all finitely additive μ-a.c. bounded measures.

  9. Domain (mathematical analysis) - Wikipedia

    en.wikipedia.org/wiki/Domain_(mathematical_analysis)

    In mathematical analysis, a domain or region is a non-empty, connected, and open set in a topological space. In particular, it is any non-empty connected open subset of the real coordinate space R n or the complex coordinate space C n. A connected open subset of coordinate space is frequently used for the domain of a function. [a]