When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Random variable - Wikipedia

    en.wikipedia.org/wiki/Random_variable

    A random variable is a measurable function: from a sample space as a set of possible outcomes to a measurable space.The technical axiomatic definition requires the sample space to be a sample space of a probability triple (,,) (see the measure-theoretic definition).

  3. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...

  4. Probability-generating function - Wikipedia

    en.wikipedia.org/.../Probability-generating_function

    Probability generating functions are particularly useful for dealing with functions of independent random variables. For example: For example: If X i , i = 1 , 2 , ⋯ , N {\displaystyle X_{i},i=1,2,\cdots ,N} is a sequence of independent (and not necessarily identically distributed) random variables that take on natural-number values, and

  5. Multivariate random variable - Wikipedia

    en.wikipedia.org/wiki/Multivariate_random_variable

    Formally, a multivariate random variable is a column vector = (, …,) (or its transpose, which is a row vector) whose components are random variables on the probability space (,,), where is the sample space, is the sigma-algebra (the collection of all events), and is the probability measure (a function returning each event's probability).

  6. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    Now consider a random variable X which has a probability density function given by a function f on the real number line. This means that the probability of X taking on a value in any given open interval is given by the integral of f over that interval.

  7. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    This random variable X has a Bernoulli distribution with parameter . [29] This is a transformation of discrete random variable. For a distribution function of an absolutely continuous random variable, an absolutely continuous random variable must be constructed.

  8. Algebra of random variables - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_random_variables

    the product of two random variables is a random variable; addition and multiplication of random variables are both commutative; and; there is a notion of conjugation of random variables, satisfying (XY) * = Y * X * and X ** = X for all random variables X,Y and coinciding with complex conjugation if X is a constant.

  9. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    A likelihood function (often simply called the likelihood) measures how well a statistical model explains observed data by calculating the probability of seeing that data under different parameter values of the model. It is constructed from the joint probability distribution of the random variable that (presumably) generated the observations.