Search results
Results From The WOW.Com Content Network
A random variable is a measurable function: from a sample space as a set of possible outcomes to a measurable space.The technical axiomatic definition requires the sample space to be a sample space of a probability triple (,,) (see the measure-theoretic definition).
If a random variable admits a probability density function, then the characteristic function is the Fourier transform (with sign reversal) of the probability density function. Thus it provides an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions .
A plot of the Q-function. In statistics, the Q-function is the tail distribution function of the standard normal distribution. [1] [2] In other words, () is the probability that a normal (Gaussian) random variable will obtain a value larger than standard deviations.
Mode: for a discrete random variable, the value with highest probability; for an absolutely continuous random variable, a location at which the probability density function has a local peak. Quantile : the q-quantile is the value x {\displaystyle x} such that P ( X < x ) = q {\displaystyle P(X<x)=q} .
Probability generating functions are particularly useful for dealing with functions of independent random variables. For example: For example: If X i , i = 1 , 2 , ⋯ , N {\displaystyle X_{i},i=1,2,\cdots ,N} is a sequence of independent (and not necessarily identically distributed) random variables that take on natural-number values, and
In probability and statistics, the quantile function outputs the value of a random variable such that its probability is less than or equal to an input probability value. Intuitively, the quantile function associates with a range at and below a probability input the likelihood that a random variable is realized in that range for some ...
Now consider a random variable X which has a probability density function given by a function f on the real number line. This means that the probability of X taking on a value in any given open interval is given by the integral of f over that interval.
If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of those values. More formally, in the case when the random variable is defined over a discrete probability space, the "conditions" are a partition of this probability space.