When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Kernel methods owe their name to the use of kernel functions, which enable them to operate in a high-dimensional, implicit feature space without ever computing the coordinates of the data in that space, but rather by simply computing the inner products between the images of all pairs of data in the feature space. This operation is often ...

  3. Volterra series - Wikipedia

    en.wikipedia.org/wiki/Volterra_series

    The Volterra series is a model for non-linear behavior similar to the Taylor series.It differs from the Taylor series in its ability to capture "memory" effects. The Taylor series can be used for approximating the response of a nonlinear system to a given input if the output of the system depends strictly on the input at that particular time.

  4. Low-rank matrix approximations - Wikipedia

    en.wikipedia.org/wiki/Low-rank_matrix_approximations

    Kernel methods become computationally unfeasible when the number of points is so large such that the kernel matrix cannot be stored in memory. If n {\displaystyle n} is the number of training examples, the storage and computational cost required to find the solution of the problem using general kernel method is O ( D 2 ) {\displaystyle O(D^{2 ...

  5. Nonlinear dimensionality reduction - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_dimensionality...

    Nonlinear dimensionality reduction, also known as manifold learning, is any of various related techniques that aim to project high-dimensional data, potentially existing across non-linear manifolds which cannot be adequately captured by linear decomposition methods, onto lower-dimensional latent manifolds, with the goal of either visualizing ...

  6. Kernel methods for vector output - Wikipedia

    en.wikipedia.org/wiki/Kernel_methods_for_vector...

    Kernel methods are a well-established tool to analyze the relationship between input data and the corresponding output of a function. Kernels encapsulate the properties of functions in a computationally efficient way and allow algorithms to easily swap functions of varying complexity.

  7. Kernelization - Wikipedia

    en.wikipedia.org/wiki/Kernelization

    That a kernelizable and decidable problem is fixed-parameter tractable can be seen from the definition above: First the kernelization algorithm, which runs in time (| |) for some c, is invoked to generate a kernel of size (). The kernel is then solved by the algorithm that proves that the problem is decidable.

  8. Nonlinear system identification - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_system...

    System identification is a method of identifying or measuring the mathematical model of a system from measurements of the system inputs and outputs. The applications of system identification include any system where the inputs and outputs can be measured and include industrial processes, control systems, economic data, biology and the life sciences, medicine, social systems and many more.

  9. Kernel regression - Wikipedia

    en.wikipedia.org/wiki/Kernel_regression

    Python: the KernelReg class for mixed data types in the statsmodels.nonparametric sub-package (includes other kernel density related classes), the package kernel_regression as an extension of scikit-learn (inefficient memory-wise, useful only for small datasets) R: the function npreg of the np package can perform kernel regression. [7] [8]