Search results
Results From The WOW.Com Content Network
The number density (symbol: n or ρ N) is ... Using the number density of an ideal gas at 0 °C and 1 atm as a yardstick: n 0 = 1 amg = 2.686 7774 × 10 25 m −3 is ...
where P is the absolute pressure of the gas, n is the number density of the molecules (given by the ratio n = N/V, in contrast to the previous formulation in which n is the number of moles), T is the absolute temperature, and k B is the Boltzmann constant relating temperature and energy, given by: =
The Loschmidt constant or Loschmidt's number (symbol: n 0) is the number of particles (atoms or molecules) of an ideal gas per volume (the number density), and usually quoted at standard temperature and pressure. The 2018 CODATA recommended value [1] is 2.686 780 111... × 10 25 m −3 at 0 °C and 1 atm.
Consider a steady diffusion between two regions of the same gas with perfectly flat and parallel boundaries separated by a layer of the same gas. Both regions have uniform number densities, but the upper region has a higher number density than the lower region. In the steady state, the number density at any point is constant (that is ...
Under the free electron model, the electrons in a metal can be considered to form a uniform Fermi gas. The number density / of conduction electrons in metals ranges between approximately 10 28 and 10 29 electrons per m 3, which is also the typical density of atoms in
is the number of gas particles; is the Boltzmann constant (1.381 × 10 −23 J·K −1). The probability distribution of particles by velocity or energy is given by the Maxwell speed distribution. The ideal gas model depends on the following assumptions:
An amagat (denoted amg or Am [1]) is a practical unit of volumetric number density.Although it can be applied to any substance at any conditions, it is defined as the number of ideal gas molecules per unit volume at 1 atm (101.325 kPa) and 0 °C (273.15 K). [2]
The gas constant occurs in the ideal gas law: = = where P is the absolute pressure, V is the volume of gas, n is the amount of substance, m is the mass, and T is the thermodynamic temperature. R specific is the mass-specific gas constant. The gas constant is expressed in the same unit as molar heat.