Search results
Results From The WOW.Com Content Network
Gravity currents occur at a variety of scales throughout nature. Examples include avalanches, haboobs, seafloor turbidity currents, [13] lahars, pyroclastic flows, and lava flows. There are also gravity currents with large density variations - the so-called low Mach number compressible flows. An example of such a gravity current is the heavy ...
In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. [1] The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the positive charges at this point.
Pyroclastic flows sweep down the flanks of Mayon Volcano, Philippines, in 2018. A pyroclastic flow (also known as a pyroclastic density current or a pyroclastic cloud) [1] is a fast-moving current of hot gas and volcanic matter (collectively known as tephra) that flows along the ground away from a volcano at average speeds of 100 km/h (30 m/s; 60 mph) but is capable of reaching speeds up to ...
In fluid dynamics, a convection cell is the phenomenon that occurs when density differences exist within a body of liquid or gas. These density differences result in rising and/or falling convection currents, which are the key characteristics of a convection cell. When a volume of fluid is heated, it expands and becomes less dense and thus more ...
Probability currents are analogous to mass currents in hydrodynamics and electric currents in electromagnetism. As in those fields, the probability current (i.e. the probability current density) is related to the probability density function via a continuity equation. The probability current is invariant under gauge transformation.
In electromagnetism, displacement current density is the quantity ∂D/∂t appearing in Maxwell's equations that is defined in terms of the rate of change of D, the electric displacement field. Displacement current density has the same units as electric current density, and it is a source of the magnetic field just as actual current is.
ρ is the free electric charge density (in units of C/m 3) J is the current density = with v as the velocity of the charges. The equation would apply equally to masses (or other conserved quantities), where the word mass is substituted for the words electric charge above.
Drift current density due to the charge carriers such as free electrons and holes is the current passing through a square centimeter area perpendicular to the direction of flow. (i) Drift current density J n {\displaystyle J_{n}} , due to free electrons is given by: