When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Blocking (statistics) - Wikipedia

    en.wikipedia.org/wiki/Blocking_(statistics)

    By using one of these methods to account for nuisance variables, researchers can enhance the internal validity of their experiments, ensuring that the effects observed are more likely attributable to the manipulated variables rather than extraneous influences. In the first example provided above, the sex of the patient would be a nuisance variable.

  3. Skewness - Wikipedia

    en.wikipedia.org/wiki/Skewness

    Example distribution with positive skewness. These data are from experiments on wheat grass growth. In probability theory and statistics, skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean. The skewness value can be positive, zero, negative, or undefined.

  4. Controlling for a variable - Wikipedia

    en.wikipedia.org/wiki/Controlling_for_a_variable

    In this context the extraneous variables can be controlled for by using multiple regression. The regression uses as independent variables not only the one or ones whose effects on the dependent variable are being studied, but also any potential confounding variables, thus avoiding omitted variable bias. "Confounding variables" in this context ...

  5. Dependent and independent variables - Wikipedia

    en.wikipedia.org/wiki/Dependent_and_independent...

    In mathematics, a function is a rule for taking an input (in the simplest case, a number or set of numbers) [5] and providing an output (which may also be a number). [5] A symbol that stands for an arbitrary input is called an independent variable, while a symbol that stands for an arbitrary output is called a dependent variable. [6]

  6. Bias (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bias_(statistics)

    Detection bias occurs when a phenomenon is more likely to be observed for a particular set of study subjects. For instance, the syndemic involving obesity and diabetes may mean doctors are more likely to look for diabetes in obese patients than in thinner patients, leading to an inflation in diabetes among obese patients because of skewed detection efforts.

  7. Box plot - Wikipedia

    en.wikipedia.org/wiki/Box_plot

    A box plot of the data set can be generated by first calculating five relevant values of this data set: minimum, maximum, median (Q 2), first quartile (Q 1), and third quartile (Q 3). The minimum is the smallest number of the data set. In this case, the minimum recorded day temperature is 57°F. The maximum is the largest number of the data set.

  8. Noisy data - Wikipedia

    en.wikipedia.org/wiki/Noisy_data

    This includes data corruption and the term is often used as a synonym for corrupt data. [1] It also includes any data that a user system cannot understand and interpret correctly. Many systems, for example, cannot use unstructured text. Noisy data can adversely affect the results of any data analysis and skew conclusions if not handled properly.

  9. Demand characteristics - Wikipedia

    en.wikipedia.org/wiki/Demand_characteristics

    Be specific and clear: If the purpose of the experiment is not clear or ambiguous, then the participants may guess many different hypotheses and cause the data to be skewed even more. [8] Double blind: Do not inform the person who has contact with the participants about the research hypotheses. This reduces the experimenter-expectancy effect.