When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Chudnovsky algorithm - Wikipedia

    en.wikipedia.org/wiki/Chudnovsky_algorithm

    The Chudnovsky algorithm is a fast method for calculating the digits of π, based on Ramanujan's π formulae.Published by the Chudnovsky brothers in 1988, [1] it was used to calculate π to a billion decimal places.

  3. Gauss–Legendre algorithm - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_algorithm

    It repeatedly replaces two numbers by their arithmetic and geometric mean, in order to approximate their arithmetic-geometric mean. The version presented below is also known as the Gauss–Euler , Brent–Salamin (or Salamin–Brent ) algorithm ; [ 1 ] it was independently discovered in 1975 by Richard Brent and Eugene Salamin .

  4. Python syntax and semantics - Wikipedia

    en.wikipedia.org/wiki/Python_syntax_and_semantics

    Python supports normal floating point numbers, which are created when a dot is used in a literal (e.g. 1.1), when an integer and a floating point number are used in an expression, or as a result of some mathematical operations ("true division" via the / operator, or exponentiation with a negative exponent).

  5. Bailey–Borwein–Plouffe formula - Wikipedia

    en.wikipedia.org/wiki/Bailey–Borwein–Plouffe...

    Using the P function mentioned above, the simplest known formula for π is for s = 1, but m > 1. Many now-discovered formulae are known for b as an exponent of 2 or 3 and m as an exponent of 2 or it some other factor-rich value, but where several of the terms of sequence A are zero.

  6. Pi function - Wikipedia

    en.wikipedia.org/wiki/Pi_function

    (Pi function) – the gamma function when offset to coincide with the factorial Rectangular function π ( n ) {\displaystyle \pi (n)\,\!} – the Pisano period

  7. NumPy - Wikipedia

    en.wikipedia.org/wiki/NumPy

    NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]

  8. Wallis product - Wikipedia

    en.wikipedia.org/wiki/Wallis_product

    Comparison of the convergence of the Wallis product (purple asterisks) and several historical infinite series for π. S n is the approximation after taking n terms. Each subsequent subplot magnifies the shaded area horizontally by 10 times.

  9. Liu Hui's π algorithm - Wikipedia

    en.wikipedia.org/wiki/Liu_Hui's_π_algorithm

    Liu Hui's method of calculating the area of a circle. Liu Hui's π algorithm was invented by Liu Hui (fl. 3rd century), a mathematician of the state of Cao Wei.Before his time, the ratio of the circumference of a circle to its diameter was often taken experimentally as three in China, while Zhang Heng (78–139) rendered it as 3.1724 (from the proportion of the celestial circle to the diameter ...