Search results
Results From The WOW.Com Content Network
The square root of 3 is an irrational number. It is also known as Theodorus' constant, after Theodorus of Cyrene, who proved its irrationality. [citation needed] In 2013, its numerical value in decimal notation was computed to ten billion digits. [1] Its decimal expansion, written here to 65 decimal places, is given by OEIS: A002194:
Symbol Decimal expansion Formula Year ... Square root of 3, Theodorus' constant [6] 1.73205 08075 68877 29352 [Mw 3] [OEIS 4] Positive root of = ...
In the case of irrational numbers, the decimal expansion does not terminate, nor end with a repeating sequence. For example, the decimal representation of π starts with 3.14159, but no finite number of digits can represent π exactly, nor does it repeat. Conversely, a decimal expansion that terminates or repeats must be a rational number.
For most symbols, the entry name is the corresponding Unicode symbol. So, for searching the entry of a symbol, it suffices to type or copy the Unicode symbol into the search textbox. Similarly, when possible, the entry name of a symbol is also an anchor, which allows linking easily from another Wikipedia article. When an entry name contains ...
The set of rational numbers is not complete. For example, the sequence (1; 1.4; 1.41; 1.414; 1.4142; 1.41421; ...), where each term adds a digit of the decimal expansion of the positive square root of 2, is Cauchy but it does not converge to a rational number (in the real numbers, in contrast, it converges to the positive square root of 2).
In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...
The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.
In particular, it follows that L(p) = p − 1 if and only if p is a prime and 10 is a primitive root modulo p. Then, the decimal expansions of n / p for n = 1, 2, ..., p − 1, all have period p − 1 and differ only by a cyclic permutation. Such numbers p are called full repetend primes.