When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    adjacent angles in a parallelogram are supplementary (add to 180°) and, the diagonals of a rectangle are equal and cross each other in their median point. Let there be a right angle ∠ ABC, r a line parallel to BC passing by A, and s a line parallel to AB passing by C. Let D be the point of intersection of lines r and s.

  3. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    If the sum of the interior angles α and β is less than 180°, the two straight lines, produced indefinitely, meet on that side. In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's Elements, is a distinctive axiom in Euclidean geometry. It states that, in two-dimensional geometry:

  4. Transversal (geometry) - Wikipedia

    en.wikipedia.org/wiki/Transversal_(geometry)

    A transversal that cuts two parallel lines at right angles is called a perpendicular transversal. In this case, all 8 angles are right angles [1] When the lines are parallel, a case that is often considered, a transversal produces several congruent supplementary angles. Some of these angle pairs have specific names and are discussed below ...

  5. Intercept theorem - Wikipedia

    en.wikipedia.org/wiki/Intercept_theorem

    The intercept theorem, also known as Thales's theorem, basic proportionality theorem or side splitter theorem, is an important theorem in elementary geometry about the ratios of various line segments that are created if two rays with a common starting point are intercepted by a pair of parallels.

  6. Playfair's axiom - Wikipedia

    en.wikipedia.org/wiki/Playfair's_axiom

    Given that Playfair's postulate implies that only the perpendicular to the perpendicular is a parallel, the lines of the Euclid construction will have to cut each other in a point. It is also necessary to prove that they will do it in the side where the angles sum to less than two right angles, but this is more difficult. [17]

  7. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    Since these are equivalent properties, any one of them could be taken as the definition of parallel lines in Euclidean space, but the first and third properties involve measurement, and so, are "more complicated" than the second. Thus, the second property is the one usually chosen as the defining property of parallel lines in Euclidean geometry ...

  8. Angle of parallelism - Wikipedia

    en.wikipedia.org/wiki/Angle_of_parallelism

    Angle of parallelism in hyperbolic geometry. In hyperbolic geometry, angle of parallelism () is the angle at the non-right angle vertex of a right hyperbolic triangle having two asymptotic parallel sides. The angle depends on the segment length a between the right angle and the vertex of the angle of parallelism.

  9. Angle - Wikipedia

    en.wikipedia.org/wiki/Angle

    An angle smaller than a right angle (less than 90°) is called an acute angle [6] ("acute" meaning "sharp"). An angle equal to ⁠ 1 / 4 ⁠ turn (90° or ⁠ π / 2 ⁠ radians) is called a right angle. Two lines that form a right angle are said to be normal, orthogonal, or perpendicular. [7]