Search results
Results From The WOW.Com Content Network
If a statement's inverse is false, then its converse is false (and vice versa). If a statement's negation is false, then the statement is true (and vice versa). If a statement (or its contrapositive) and the inverse (or the converse) are both true or both false, then it is known as a logical biconditional.
In logic and mathematics, the converse of a categorical or implicational statement is the result of reversing its two constituent statements. For the implication P → Q, the converse is Q → P. For the categorical proposition All S are P, the converse is All P are S. Either way, the truth of the converse is generally independent from that of ...
The inverse and the converse of a conditional are logically equivalent to each other, just as the conditional and its contrapositive are logically equivalent to each other. [1] But the inverse of a conditional cannot be inferred from the conditional itself (e.g., the conditional might be true while its inverse might be false [2]). For example ...
In propositional logic, affirming the consequent (also known as converse error, fallacy of the converse, or confusion of necessity and sufficiency) is a formal fallacy (or an invalid form of argument) that is committed when, in the context of an indicative conditional statement, it is stated that because the consequent is true, therefore the ...
Venn diagram of (true part in red) In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or biimplication or bientailment, is the logical connective used to conjoin two statements and to form the statement "if and only if" (often abbreviated as "iff " [1]), where is known as the antecedent, and the consequent.
A branch of logic that studies principles of connection between propositions, such as the relation between a statement and its contrapositive. consequence relation A relation between sets of sentences or propositions, where the truth of the first set (the premises) necessitates the truth of the second set (the consequences).
Of course, what people mean is that they wish to converse with animals the way they do with humans. But I find that if you actually pay attention to animals, they are pretty good at describing ...
De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.