Search results
Results From The WOW.Com Content Network
The extension to multiple and/or vector-valued predictor variables (denoted with a capital X) is known as multiple linear regression, also known as multivariable linear regression (not to be confused with multivariate linear regression). [10] Multiple linear regression is a generalization of simple linear regression to the case of more than one ...
In linear regression, the model specification is that the dependent variable, is a linear combination of the parameters (but need not be linear in the independent variables). For example, in simple linear regression for modeling n {\displaystyle n} data points there is one independent variable: x i {\displaystyle x_{i}} , and two parameters, β ...
The general linear model or general multivariate regression model is a compact way of simultaneously writing several multiple linear regression models. In that sense it is not a separate statistical linear model. The various multiple linear regression models may be compactly written as [1]
A basic tool for econometrics is the multiple linear regression model. [8] Econometric theory uses statistical theory and mathematical statistics to evaluate and develop econometric methods. [9] [10] Econometricians try to find estimators that have desirable statistical properties including unbiasedness, efficiency, and consistency.
In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...
The theory relating to such models uses the design matrix as input to some linear algebra : see for example linear regression. A notable feature of the concept of a design matrix is that it is able to represent a number of different experimental designs and statistical models, e.g., ANOVA, ANCOVA, and linear regression. [citation needed]
Although polynomial regression fits a nonlinear model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data. For this reason, polynomial regression is considered to be a special case of multiple linear regression. [1]
In statistics, Scheffé's method, named after American statistician Henry Scheffé, is a method for adjusting significance levels in a linear regression analysis to account for multiple comparisons. It is particularly useful in analysis of variance (a special case of regression analysis), and in constructing simultaneous confidence bands for ...