Ad
related to: famous formulas math
Search results
Results From The WOW.Com Content Network
1.1 Mathematics. 1.2 Physics. 1.3 Chemistry. 1.4 Biology. 1.5 Economics. ... This is a list of equations, by Wikipedia page under appropriate bands of their field.
This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. Here, is taken to have the value
Logarithms: the inverses of exponential functions; useful to solve equations involving exponentials. Natural logarithm; Common logarithm; Binary logarithm; Power functions: raise a variable number to a fixed power; also known as Allometric functions; note: if the power is a rational number it is not strictly a transcendental function. Periodic ...
This is a list of scientific equations named after people (eponymous equations). [1 Equation Field Person(s) named after ... Mathematics: Diophantus of Alexandria ...
Group (mathematics) Halting problem. insolubility of the halting problem; Harmonic series (mathematics) divergence of the (standard) harmonic series; Highly composite number; Area of hyperbolic sector, basis of hyperbolic angle; Infinite series. convergence of the geometric series with first term 1 and ratio 1/2; Integer partition; Irrational ...
Mathematics is a field of study that discovers and organizes methods, ... (the study of formulas and related structures), ... A famous list of 23 open problems, ...
Fuchs's theorem (differential equations) Fuglede's theorem (functional analysis) Full employment theorem (theoretical computer science) Fulton–Hansen connectedness theorem (algebraic geometry) Fundamental theorem of algebra (complex analysis) Fundamental theorem of arbitrage-free pricing (financial mathematics)
Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.