Search results
Results From The WOW.Com Content Network
An example of a Kaplan–Meier plot for two conditions associated with patient survival. The Kaplan–Meier estimator, [1] [2] also known as the product limit estimator, is a non-parametric statistic used to estimate the survival function from lifetime data. In medical research, it is often used to measure the fraction of patients living for a ...
The logrank test is based on the same assumptions as the Kaplan-Meier survival curve—namely, that censoring is unrelated to prognosis, the survival probabilities are the same for subjects recruited early and late in the study, and the events happened at the times specified. Deviations from these assumptions matter most if they are satisfied ...
An early paper to use the Kaplan–Meier estimator for estimating censored costs was Quesenberry et al. (1989), [3] however this approach was found to be invalid by Lin et al. [4] unless all patients accumulated costs with a common deterministic rate function over time, they proposed an alternative estimation technique known as the Lin ...
Paul Meier (July 24, 1924 – August 7, 2011) [1] was a statistician who promoted the use of randomized trials in medicine. [2] [3]Meier is known for introducing, with Edward L. Kaplan, the Kaplan–Meier estimator, [4] [5] a method for measuring how many patients survive a medical treatment from one duration to another, taking into account that the sampled population changes over time.
As a counterpart of the Kaplan–Meier curve, which is used to describe the time to a terminal event, recurrent event data can be described using the mean cumulative function, which is the average number of cumulative events experienced by an individual in the study at each point in time since the start of follow-up.
It can be used for example when testing the homogeneity of Poisson processes. [3] It was constructed by Wayne Nelson and Odd Aalen. [4] [5] [6] The Nelson-Aalen estimator is directly related to the Kaplan-Meier estimator and both maximize the empirical likelihood. [7]
For example, one might use it to fit an isotonic curve to the means of some set of experimental results when an increase in those means according to some particular ordering is expected. A benefit of isotonic regression is that it is not constrained by any functional form, such as the linearity imposed by linear regression , as long as the ...
Statistical inference makes propositions about a population, using data drawn from the population with some form of sampling.Given a hypothesis about a population, for which we wish to draw inferences, statistical inference consists of (first) selecting a statistical model of the process that generates the data and (second) deducing propositions from the model.