Search results
Results From The WOW.Com Content Network
where e is the eccentricity and l is the semi-latus rectum. As above, for e = 0, the graph is a circle, for 0 < e < 1 the graph is an ellipse, for e = 1 a parabola, and for e > 1 a hyperbola. The polar form of the equation of a conic is often used in dynamics; for instance, determining the orbits of objects revolving about the Sun. [20]
The length of the chord through one of the foci, perpendicular to the major axis of the hyperbola, is called the latus rectum. One half of it is the semi-latus rectum. A calculation shows =. The semi-latus rectum may also be viewed as the radius of curvature at the vertices.
For the special case of a circle, the lengths of the semi-axes are both equal to the radius of the circle. The length of the semi-major axis a of an ellipse is related to the semi-minor axis's length b through the eccentricity e and the semi-latus rectum ℓ {\displaystyle \ell } , as follows:
The latus rectum is defined similarly for the other two conics – the ellipse and the hyperbola. The latus rectum is the line drawn through a focus of a conic section parallel to the directrix and terminated both ways by the curve. For any case, is the radius of the osculating circle at the vertex. For a parabola, the semi-latus rectum, , is ...
The length of the chord through one focus, perpendicular to the major axis, is called the latus rectum. One half of it is the semi-latus rectum. A calculation shows: [4] = = (). The semi-latus rectum is equal to the radius of curvature at the vertices (see section curvature).
A circle is an ellipse with both foci coinciding at the center. ... is the semi-latus rectum. If > then the parabola opens to the right, and if < the ...
A conic section with one focus on the pole and the other somewhere on the 0° ray (so that the conic's major axis lies along the polar axis) is given by: = where e is the eccentricity and is the semi-latus rectum (the perpendicular distance at a focus from the major axis to the curve).
A circle of finite radius has an infinitely distant directrix, while a pair of lines of finite separation have an infinitely distant focus. In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape.