When.com Web Search

  1. Ads

    related to: managing machine learning projects pdf

Search results

  1. Results From The WOW.Com Content Network
  2. ModelOps - Wikipedia

    en.wikipedia.org/wiki/ModelOps

    ModelOps (model operations or model operationalization), as defined by Gartner, "is focused primarily on the governance and lifecycle management of a wide range of operationalized artificial intelligence (AI) and decision models, including machine learning, knowledge graphs, rules, optimization, linguistic and agent-based models" in Multi-Agent Systems. [1] "

  3. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    OpenML: [493] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms. PMLB: [494] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms ...

  4. MLOps - Wikipedia

    en.wikipedia.org/wiki/MLOps

    MLOps is the set of practices at the intersection of Machine Learning, DevOps and Data Engineering. MLOps or ML Ops is a paradigm that aims to deploy and maintain machine learning models in production reliably and efficiently. The word is a compound of "machine learning" and the continuous delivery practice (CI/CD) of DevOps in the software ...

  5. Outline of machine learning - Wikipedia

    en.wikipedia.org/wiki/Outline_of_machine_learning

    Machine learning (ML) is a subfield of artificial intelligence within computer science that evolved from the study of pattern recognition and computational learning theory. [1] In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". [ 2 ]

  6. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]

  7. Applications of artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Applications_of_artificial...

    Machine learning can be used to combat spam, scams, and phishing. It can scrutinize the contents of spam and phishing attacks to attempt to identify malicious elements. [15] Some models built via machine learning algorithms have over 90% accuracy in distinguishing between spam and legitimate emails. [16]

  8. ISO/IEC JTC 1/SC 42 - Wikipedia

    en.wikipedia.org/wiki/ISO/IEC_JTC_1/SC_42

    ISO/IEC 24668: Process management framework for big data analytics Published (2022) ISO/IEC TS 4213: ISO/IEC TS 4213: Assessment of Machine Learning Classification Performance [17] Published (2022) ISO/IEC 24029-1: ISO/IEC TR 24029-1: Assessment of the robustness of neural networks — Part 1: Overview Published (2021) ISO/IEC 24029-2

  9. Rule-based machine learning - Wikipedia

    en.wikipedia.org/wiki/Rule-based_machine_learning

    Rule-based machine learning (RBML) is a term in computer science intended to encompass any machine learning method that identifies, learns, or evolves 'rules' to store, manipulate or apply. [ 1 ] [ 2 ] [ 3 ] The defining characteristic of a rule-based machine learner is the identification and utilization of a set of relational rules that ...