Search results
Results From The WOW.Com Content Network
CellCognition uses a computational pipeline which includes image segmentation, object detection, feature extraction, statistical classification, tracking of individual cells over time, detection of class-transition motifs (e.g. cells entering mitosis), and HMM correction of classification errors on class labels.
The same cells that recognize PAMPs on microbial pathogens may bind to the antigen of a foreign blood cell and recognize it as a pathogen because the antigen is unfamiliar. [11] It is not easy to classify red blood cell recognition as intrinsic or extrinsic, as a foreign cell may be recognized as part of the organism if it has the right antigens.
Jupyter Notebooks can execute cells of Python code, retaining the context between the execution of cells, which usually facilitates interactive data exploration. [5] Elixir is a high-level functional programming language based on the Erlang VM. Its machine-learning ecosystem includes Nx for computing on CPUs and GPUs, Bumblebee and Axon for ...
The structure in layer I and II is somewhat similar to the cerebral cortex if stellate cells are assumed to be involved in transposing input vectors. Whether both types of stellate cells have the same function is not clear, as layer I has excitatory spiny cells and layer II has inhibitory aspiny cells. The latter indicates a much different network.
Most cellular deconvolution algorithms consider an input data in a form of a matrix , which represents some molecular information (e.g. gene expression data or DNA methylation data) measured over a group of samples and marks (e.g. genes or CpG sites).
Object recognition – technology in the field of computer vision for finding and identifying objects in an image or video sequence. Humans recognize a multitude of objects in images with little effort, despite the fact that the image of the objects may vary somewhat in different view points, in many different sizes and scales or even when they are translated or rotated.
Recognizing simple digit images is the most classic application of LeNet as it was created because of that. Yann LeCun et al. created LeNet-1 in 1989. The paper Backpropagation Applied to Handwritten Zip Code Recognition [ 4 ] demonstrates how such constraints can be integrated into a backpropagation network through the architecture of the network.
A cellular automaton consists of a regular grid of cells, each in one of a finite number of states, such as on and off (in contrast to a coupled map lattice). The grid can be in any finite number of dimensions. For each cell, a set of cells called its neighborhood is defined relative to the specified cell.