Search results
Results From The WOW.Com Content Network
Integer-distance straight line embeddings are known to exist for cubic graphs. [3] Sachs (1983) raised the question of whether every graph with a linkless embedding in three-dimensional Euclidean space has a linkless embedding in which all edges are represented by straight line segments, analogously to Fáry's theorem for two-dimensional ...
For each pair of lines, there can be only one cell where the two lines meet at the bottom vertex, so the number of downward-bounded cells is at most the number of pairs of lines, () /. Adding the unbounded and bounded cells, the total number of cells in an arrangement can be at most n ( n + 1 ) / 2 + 1 {\displaystyle n(n+1)/2+1} . [ 5 ]
In geometry, a straight line, usually abbreviated line, is an infinitely long object with no width, depth, or curvature, an idealization of such physical objects as a straightedge, a taut string, or a ray of light. Lines are spaces of dimension one, which may be embedded in spaces of dimension two, three, or
In geometry, a line segment is a part of a straight line that is bounded by two distinct endpoints (its extreme points), and contains every point on the line that is between its endpoints. It is a special case of an arc, with zero curvature. The length of a line segment is given by the Euclidean distance between its endpoints.
The motion of a particle (a point-like object) along a line can be described by its position , which varies with (time). An example of linear motion is an athlete running a 100-meter dash along a straight track. [2] Linear motion is the most basic of all motion.
If the sum of the interior angles α and β is less than 180°, the two straight lines, produced indefinitely, meet on that side. In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's Elements, is a distinctive axiom in Euclidean geometry.
Line a is a great circle, the equivalent of a straight line in spherical geometry. Line c is equidistant to line a but is not a great circle. It is a parallel of latitude. Line b is another geodesic which intersects a in two antipodal points. They share two common perpendiculars (one shown in blue).
The line through segment AD and the line through segment B 1 B are skew lines because they are not in the same plane. In three-dimensional geometry, skew lines are two lines that do not intersect and are not parallel. A simple example of a pair of skew lines is the pair of lines through opposite edges of a regular tetrahedron.