Ad
related to: how to calculate resistors
Search results
Results From The WOW.Com Content Network
Various resistor types of different shapes and sizes. A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active elements, and terminate transmission lines, among other uses.
Resistors (and other elements with resistance) oppose the flow of electric current; therefore, electrical energy is required to push current through the resistance. This electrical energy is dissipated, heating the resistor in the process. This is called Joule heating (after James Prescott Joule), also called ohmic heating or resistive heating.
Electrical resistivity (also called volume resistivity or specific electrical resistance) is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current.
The two resistors follow Ohm's law: The plot is a straight line through the origin. The other two devices do not follow Ohm's law. There are, however, components of electrical circuits which do not obey Ohm's law; that is, their relationship between current and voltage (their I – V curve ) is nonlinear (or non-ohmic).
In the figure, R x is the fixed, yet unknown, resistance to be measured. R 1, R 2, and R 3 are resistors of known resistance and the resistance of R 2 is adjustable. The resistance R 2 is adjusted until the bridge is "balanced" and no current flows through the galvanometer V g.
To calculate the E192 series: is 192, then is incremented from 0 to 191 through the formula, with one exception for = where 9.20 is the official value instead of the calculated 9.19 value. Since some values of the E24 series do not exist in the E48, E96, or E192 series, some resistor manufacturers have added missing E24 values into some of ...
Series RC circuit. The RC time constant, denoted τ (lowercase tau), the time constant (in seconds) of a resistor–capacitor circuit (RC circuit), is equal to the product of the circuit resistance (in ohms) and the circuit capacitance (in farads):
At each stage, resistors for the "rung" and "leg" are chosen so that the rung value matches the leg value plus the equivalent resistance of the previous rungs. The rung and leg resistors can be formed by pairing other resistors in series or parallel in order to increase the number of available combinations. This process can be automated.